Документ подписан простой эл Оненьний материал для диагностического тестирования

Информация о владельце:

ФИО: Косенок Сергей Тесетовое задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата под Уникальн	ный программный ключ: <u>Paa1e62674b54f4998099d3d6bfdcf836</u> Код, направление	Математический анализ, 1-й семестр 09.03.02 Информационные системы и технологии
	подготовки Направленность (профиль)	Информационные системы и технологии
	Форма обучения	очная
	Кафедра-разработчик	Кафедра прикладной математики
	Выпускающая кафедра	Кафедра информатики и вычислительной техники

Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса
ОПК-1.1, ОПК-1.2, ОПК-1.3	1. Укажите формулу для нахождения производной произведения двух функций.	1) $(uv)' = uv + u'v'$ 2) $(uv)' = u'v + uv'$ 3) $(uv)' = u'v'$ 4) $(uv)' = u'v - uv'$	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	2. Укажите производную функции $y = \sin x^2$	1) cos 2x 2) 2cos x 3) xcos x ² 4) 2xcos x ²	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	3. Укажите предел последовательности $x_n = \frac{2n}{n+1}$	1) 2 2) 1 3) 0.5 4) 0	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	4. Заполните пропуск: Если функция дифференцируема в точке, то она [[]] в этой точке.	1) непрерывна 2) разрывна 3) не определена 4) дважды дифференцируема	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	5. Заполните пропуск: Производная функции характеризует [[]] функции.	1) множество значений 2) непрерывность 3) ограниченность 4) скорость изменения	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	6. Укажите производную функции $y = \operatorname{arctg} e^x$	1) e^{x} arctg e^{x} 2) $\frac{e^{x}}{1 + e^{2x}}$ 3) $\frac{1}{1 + e^{x}}$ 4) $\frac{e^{x}}{\cos^{2}e^{x}}$	средний

ОПК-1.1,	7. Укажите значение	1) 3	средний
ОПК-1.2,	предела	2) 12	ередиии
ОПК-1.3	$\sin 3x \sin 4x$	3) 4	
	$\lim_{x\to 0} {2x^2}$	4) 6	
ОПК-1.1,	8. Укажите значение	1) 1	средний
ОПК-1.2,	предела:	(2) ∞	
ОПК-1.3	$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$	3) 0	
	$n \to \infty$	$4)\sqrt{2}$	
ОПК-1.1,	9. Соотнесите функциям	$1) 2^x$	средний
ОПК-1.2,	их производные.	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ arcsin x	
ОПК-1.3		3) tg x	
		4) $\operatorname{arcctg} x$	
		, , , , , , ,	
		a) $\frac{1}{\cos^2 x}$	
		$\begin{array}{c} \begin{array}{c} x^{y} \cos^{2} x \\ \text{b) } 2^{x} \ln 2 \end{array}$	
		$c) \frac{-1}{1+x^2}$	
		$d)\frac{1}{\sqrt{1-r^2}}$	
		V1-x ²	
ОПК-1.1,	10. Укажите асимптоты	1) y = 4x	средний
ОПК-1.2,	функции:	$\begin{vmatrix} 1 \\ 2 \end{vmatrix} y = x$	ор одини
ОПК-1.3	4	$\begin{vmatrix} -7 \\ 3 \end{vmatrix} x = 0$	
	$y = \frac{1}{x^2}$	$\begin{vmatrix} 3 & y & 0 \\ 4 & y & 0 \end{vmatrix}$	
ОПК-1.1,	11. Укажите производную	1)	средний
ОПК-1.2,	ϕ ункции $y = \operatorname{tg} x^3$	1	
ОПК-1.3		$\frac{1}{\cos^2 x^3}$	
		2)	
		$3x^2 \operatorname{tg} x^3$	
		3)	
		$3x^2$	
		$\frac{\cos^2 x^3}{\cos^2 x^3}$	
		4)	
		$tg x^3$	
ОПК-1.1,	12. Заполните пропуск:	1) дифференцируемой	средний
ОПК-1.2,	Если в точке а	2) непрерывной	
ОПК-1.3	справедливо равенство	3) непрерывно-	
	$ \lim_{x \to a} f(x) = f(a) $	дифференцируемой	
	то функция f называется	4) гладкой	
	[[]] в этой точке.		
ОПК-1.1,	13. Укажите значение	1) 0	средний
ОПК-1.2,	предела	2) ∞	
ОПК-1.3	$\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$	3) 1	
		4) -1	
ОПК-1.1,	14. Выберите все верные	1) возрастающая и	средний
ОПК-1.2,	утверждения из	ограниченная сверху	
ОПК-1.3	перечисленных.	последовательность	
		сходится	
		2) возрастающая и	
		ограниченная снизу	
		последовательность	
		сходится	
		3) убывающая и	
	1	ограниченная сверху	

		последовательность	
		сходится	
		4) убывающая и	
		ограниченная снизу	
		последовательность	
		сходится	
ОПК-1.1,	15. Вычислите		средний
ОПК-1.2,	производную функции		
ОПК-1.3	$y = 10 \ln \left(x + \sqrt{x^2 + 9} \right)$		
	,		
OTIL 1 1	в точке $x = 4$.	1)	_
ОПК-1.1,	16. Выберите все верные	1) непрерывная на отрезке	высокий
ОПК-1.2,	утверждения.	функция ограничена	
ОПК-1.3		2) непрерывная на отрезке	
		функция достигает на нем	
		максимального значения	
		3) непрерывная на отрезке	
		функция	
		дифференцируема на нем	
		4) непрерывная на отрезке	
OTIL: 1.1	17 D C	функция всегда монотонна	U
ОПК-1.1,	17. Выберите все верные	1) если функция строго	высокий
ОПК-1.2,	утверждения.	возрастает на интервале,	
ОПК-1.3		то ее производная на этом	
		интервале положительна	
		2) если производная	
		функции положительна на	
		интервале, то функция	
		строго возрастает на этом	
		интервале	
		3) если функция строго	
		убывает на интервале, то	
		ее производная на этом	
		интервале неположительна	
		4) если производная функции неположительна	
		**	
		на интервале, то она возрастает на этом	
		интервале	
ОПК-1.1,	18. Выберите все верные	1) если	высокий
ОПК-1.1,	утверждения.	последовательность	DDIOORIII
ОПК-1.2,	J. Depagemin.	сходится, то она	
		ограничена	
		2) если	
		последовательность	
		положительна и сходится,	
		то ее предел также	
		положителен	
		3) если	
		последовательность	
		ограничена, то она	
		сходится	
		4) если предел	
		последовательности	
		существует, то он	
		единственен	
		1	

ОПК-1.1,	19. Выберите все верные	1) касательная – это	высокий
ОПК-1.2,	утверждения.	прямая, которая	
ОПК-1.3		пересекает график	
		функции только в одной	
		точке	
		2) производная равна	
		тангенсу угла наклона	
		касательной	
		3) график функции может	
		иметь только одну	
		асимптоту	
		4) касательная может	
		пересекать график	
		функции в нескольких	
		точках	
ОПК-1.1,	20. Найдите значение		высокий
ОПК-1.2,	предела:		
ОПК-1.3	$\lim \frac{\sin x + e^x - 1}{1 + 1}$		
	$\frac{1111}{x\to 0} \frac{1}{\ln(1+2x)}$		

Форма оценочного материала для диагностического тестирования

Тестовое задание для диагностического тестирования по дисциплине:

Математический анализ, 2-й семестр

Код, направление подготовки	09.03.02 Информационные системы и технологии
Направленность (профиль)	Информационные системы и технологии
Форма обучения	очная
Кафедра-разработчик	Кафедра прикладной математики
Выпускающая кафедра	Кафедра информатики и вычислительной техники

	Варианты ответов	Тип
		сложности
		вопроса
1. Заполните пропуск:	1) дифференциалов	низкий
Неопределенный	2) производных	
интеграл — это	3) первообразных	
совокупность всех	4) пределов	
[[]] функции.		
2. Укажите значение	1) 1	низкий
интеграла:	$(2)^{\frac{1}{2}} - 1$	
e C dx	I	
	,	
<i>J</i> X 1	4) 6	
	Неопределенный интеграл — это совокупность всех [[]] функции. 2. Укажите значение интеграла:	Неопределенный интеграл — это совокупность всех [[]] функции. 2) производных 3) первообразных 4) пределов 2. Укажите значение интеграла: 1) 1

ОПК-1.1, ОПК-1.2, ОПК-1.3 ОПК-1.1, ОПК-1.2, ОПК-1.3	3. Укажите производную f'_x для функции $f = e^{xy^2}$ 4. Укажите формулу интегрирования по частям.	1) e^{xy^2} 2) xe^{xy^2} 3) e^{y^2} 4) $y^2e^{xy^2}$ 1) $\int udv = \int vdu$ 2) $\int udv = uv + \int vdu$ 3) $\int udv = uv - \int vdu$ 4) $\int udv = \int uvdx + \int vdu$	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	5. Заполните пропуск: Любые две первообразные функции $f(x)$ [[]]	1) совпадают 2) отличаются на постоянную константу 3) отличаются знаком 4) отличаются на постоянный множитель	низкий
ОПК-1.1, ОПК-1.2, ОПК-1.3	6. Укажите значение интеграла $\int_{0}^{2} dx \int_{3}^{6} dy$	1) 12 2) 2 3) 6 4) 18	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	7. Укажите дифференциал функции: $u = \sin(x - y)$	1) $\cos(x - y) (dx - dy)$ 2) $\cos(x - y)$ 3) $\sin(x - y) (dx - dy)$ 4) $\cos(x - y) (dx + dy)$	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	8. Укажите значение интеграла $\int_{-\pi}^{\pi} x^2 \sin x dx$	1) 0 2) -1 3) 1 4) 1/2	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	9. Заполните пропуск: При помощи формулы $\int\limits_{a}^{b} \sqrt{x'^2 + y'^2} dt$ можно вычислить [[]]	1) площадь криволинейной трапеции 2) длину кривой 3) объема тела вращения 4) площадь поверхности вращения	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	10. Для функции $f = \ln(x^2 + y)$ укажите соответствие между ее производными и указанными функциями.	1) f'_{x} 2) f'_{y} 3) f''_{xy} 4) f''_{yy} a) $\frac{1}{x^{2}+y}$ b) $\frac{-1}{(x^{2}+y)^{2}}$ c) $\frac{2x}{x^{2}+y}$ d) $\frac{-2x}{(x^{2}+y)^{2}}$	средний

ОПК-1.1, ОПК-1.2, ОПК-1.3	11. Заполните пропуск: При помощи формулы $\pi \int_{a}^{b} y^2 dx$ можно вычислить [[]]	 площадь криволинейной трапеции длину кривой объем тела вращения площадь поверхности вращения 1) arctg(x² + 1) + C	средний
ОПК-1.2, ОПК-1.3	интеграла: $\int \frac{2xdx}{x^2 + 1}$	2) $\operatorname{arctg}(2x) + C$ 3) $\ln(2x + 1) + C$ 4) $\ln(x^2 + 1) + C$	
ОПК-1.1, ОПК-1.2, ОПК-1.3	13. Из перечисленных функций выберите все, которые являются интегрируемыми по Риману.	1) неотрицательные 2) непрерывные 3) монотонные 4) ограниченные	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	14. Укажите значение интеграла $\int_{0}^{2} xe^{x} dx$	1) e ² + 1 2) e ² 3) e + 1 4) 1	средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	15. Вычислите интеграл: $\int_{0}^{2} 1 - x dx$		средний
ОПК-1.1, ОПК-1.2, ОПК-1.3	16. Выберите все верные равенства.	1) $\int dF(x) = F(x) + C$ 2) $d \int f(x)dx = f(x) + C$ 3) $\int CdF(x) = F(x) + C$ 4) $d \int f(x)dx = f(x)dx$	высокий
ОПК-1.1, ОПК-1.2, ОПК-1.3	17. Выберите все верные утверждения.	1) определенный интеграл - это предел интегральных сумм 2) определенный интеграл - это неопределенный интеграл, взятый на отрезке 3) если функция интегрируема на отрезке, то она ограничена на нем 4) ограниченная на отрезке функция интегрируема на нем	высокий
ОПК-1.1, ОПК-1.2, ОПК-1.3	18. Выберите все верные утверждения.	1) градиент функции ортогонален ее множествам уровня 2) градиент функции двух переменных направлен по касательной к ее линиям уровня 3) градиент функции показывает направление наискорейшего убывания функции 4) градиент функции показывает направление наискорейшего роста функции	высокий

ОПК-1.1,	19. Выберите все верные	1) если функция f	высокий
ОПК-1.2,	утверждения.	интегрируема, то	
ОПК-1.3	, F	интегрируема и функция f	
		2) если функция f	
		интегрируема, то	
		интегрируема и сама функция f	
		3) если функция	
		неотрицательна на отрезке, то	
		ее интеграл также	
		неотрицателен	
		4) если интеграл от функции	
		равен 0, то эта функция	
		тождественно равна 0 на	
		отрезке	
ОПК-1.1,	20. Вычислите интеграл:		высокий
ОПК-1.2,	e^p		
ОПК-1.3	$\int \frac{m\sqrt{x}}{dx} dx$		
	$\int_{1}^{}$ χ		