Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор Дата подписания: 25.06.2024 08:59:49 Уникальный программный **Оменочные материалы для промежуточной аттестации по дисциплине**

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

ЭКОЛОГИЧЕСКАЯ БИОФИЗИКА

Квалификация выпускника	БАКАЛАВР
	бакалавр, магистр, специалист
Направление	05.03.06
подготовки	шифр
	ЭКОЛОГИЯ И ПРИРОДОПОЛЬЗОВАНИЕ
	наименование
Направленность	ЭКОЛОГИЯ
(профиль)	наименование
Форма обучения	ОЧНАЯ
	наименование
Кафедра-	ЭКОЛОГИИ И БИОФИЗИКИ
разработчик	наименование
Выпускающая	ЭКОЛОГИИ И БИОФИЗИКИ
кафедра	наименование

Типовые контрольные задания

Письменный опрос (тест)

1.Трехкластерные модели:

- а) описывают сложные экосистемы
- б) описывают биоценоз
- в) описывают мышцы

2.Устойчивость видов зависит от:

- а) типов взаимодействия
- б) критерия Ляпунова
- в) конкуренции

3. Конкуренция близкородственных видов:

- а) дает устойчивость экосистемы
- б) устойчивость вида
- в) неустойчивость экосистемы

4.Стационарность биосистемы это:

- а) сохранение КА
- б) dx/dt=0
- $\mathbf{B})\,f_I(\mathbf{x})=f_2(\mathbf{x})$

5.Методы системной биологии базируются на:

- а) Ыпонятии динамики x(t)
- б) на понятии системы
- в) на моделях

6. Хаотические процессы в природе это:

- а) расчет констант Ляпунова
- б) расчет автокорреляции A(t)
- в) проверка инвариантности мер

7. Хаос биосистемы является:

- а) особым хаосом
- б) хаосом Лоренца
- в) описывается стохастикой

8. Метеопараметры Югры:

- а) не гомеостатичны
- б) гомеостатичны
- в) изменчивы во времени

9.Классификация моделей базируется на:

- а) динамике процесса
- б) на базе данных
- в) на аппарате для моделирования

10. Функция Гаусса используется в описании complexity:

- а) редко, в 1% случаев
- б) широко
- в) с учетом повторений

11. Устойчивость системы с насыщением обусловлена:

- а)скорость прироста численности
- б)обратной связью
- в)видом функции f(x)

12. Complexity являются:

- а) дискретными системами
- б) кусочными системами
- в) непрерывными хаотическими системами

13. Проницаемость мембран зависит:

- а) от температуры T
- б) от концентрации C(x)
- в) от парциального давления P

14. Диффузия на мембранах требует:

- а) расхода миоглобина
- б) расхода АТФ
- в) расхода глюкозы

15.Классификация моделей базируется на:

- а) динамике процесса
- б) на базе данных
- в) на аппарате для моделирования

16. Нуклеотиды в молекуле ДНК соединяются следующим типов связей:

- а) Водородной
- б) Ковалентной
- в) Пептидной
- г) присутствуют все виды связей

17. Устойчивость видов зависит от:

- а) типов взаимодействия
- б) критерия Ляпунова
- в) конкуренции

18. Модель эпизоотии это:

- a) dx/dt = (a-bx)dx
- б) dx/dt=Ax
- B) dx/dt=bxy, dy/dt=bxy

19. Хаотические процессы в природе это:

- а) проверка инвариантности мер
- б) расчет автокорреляции A(t)
- в) расчет констант Ляпунова

20. Сложные биосистемы:

- а) для которых нет прогноза будущего
- δ) x(t) находится внутри KA
- в) нет повторений динамик

21. Межкластерные взаимодействия описываются:

- а) компартментом
- б) кластером
- в) блочно-треугольной матрицей A

Темы для итоговой контрольной работы

- 1. Общая характеристика процессов поглощения энергии различных видов ионизирующей радиации.
- 2. Механизмы поглощения рентгеновского и гамма- излучений, нейтронов, ускоренных заряженных частиц.
 - 3. Действие ионизирующих излучений на многоклеточный организм.
- 4. Что такое фоновая радиоактивность и как она определяется. Восстановление от радиационного поражения.
- 5. Основные методы регистрации радиоактивных излучений и частиц. Их характеристика.
 - 6. Кинетика ферментативных реакций.
 - 7. Эффекты фоторепарации и фотозащиты.
- 8. Описать методику измерения степени близости к хаосу или к стохастике в динамике поведения экосистем.
 - 9. Оптимальное управление за счет миграции. Теории катастроф в экосистемах.
- 10. Методы синергетики и теории хаоса в оценке аттракторов. Соотношение между стохастикой и хаотической динамикой.

Оценка параметров аттракторов вектора состояния экосистемы.

11. Эпизоотии в экосистемах. Устойчивость системы с лимитированием к эпизоотиям.

12. Антиоксиданты, механизм их биологического действия. Естественные антиоксиданты тканей и их биологическая роль.

Этап: проведение промежуточной аттестации по дисциплине

Задание для показателя оценивания дискриптора «Знает»	Вид задания
Сформулируйте развернутые устные ответы на следующие	
теоретические вопросы:	
1. Предмет и задачи экологической биофизики. Методологические вопросы	
экологической биофизики.	
Математические модели. Принципы построения математических моделей	
биологических систем. Динамические модели биологических процессов.	
Линейные и нелинейные процессы.	
2. Первый и второй законы термодинамики в биологии. Характеристические	
функции и их использование в анализе биологических процессов. Энтропия.	
Изменение энтропии в открытых системах. Постулат Пригожина.	
4. Методы качественной теории дифференциальных уравнений в анализе	
динамических свойств биологических процессов.	
5. Модели экологических систем.	
Колебательные процессы в экологии.	
Кластерные модели экосистем. Их идентификация. Моделирование влияния	
экологических факторов на популяции.	Теоретиче- ское
6. Понятие о фазовой плоскости. Стационарные состояния биологических	
систем. Устойчивость стационарных состояний.	CROC
Компартментные и иерархические модели. Трехкомпартментная модель	
эпидемии или эпизоотии.	
Проблемы идентификации параметров компартментных моделей с	
помощью ММР.	
7. Демографический фактор и устойчивость развития. Математическая	
теория роста населения Земли.	
Синергетический подход в оценке и прогнозах эпизоотий и глобальных	
катастроф.	
Методы синергетики и теории хаоса в оценке квазиаттракторов.	
Соотношение между стохастикой и хаотической динамикой.	
8. Основные особенности кинетики биологических процессов.	
Охарактеризовать модель прироста биомассы. ДНК как основная	
внутриклеточная мишень при летальном действии ультрафиолетового	
света.	
Задание для показателя оценивания дискриптора «Умеет»	
Выполнить задание в виде контрольной реферативной работы в	
письменной форме из предложенных преподавателем тем (задание	Теоретико-
готовится заранее, до проведения экзамена, защита осуществляется устно с	практическое
мультимедиа-презентацией).	