Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Селгей Михайлович Должность: ректор Дата подписания: 16.06.2025 12:30:13

Уникальный программный ключ: **Математ ическая логика и теория алгоритмов** e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Квалификация	бакалавр	
выпускника		
Направление	01.03.02	
подготовки	«Прикладная математика и информатика»	
Направленность (профиль)	«Технологии программирования и анализ данных»	
-	·	
Форма обучения	Очная	
Кафедра-	Прикладной математики	
разработчик Выпускающая	Прикладной математики	
кафедра -		

Диагностический тест по дисциплине «Математическая логика и теория алгоритмов»

Проверяемые	Задание	Варианты ответов	Тип
компетенции			сложности
ОПК-2.1,	1. Среди предложений выберете те, которые являются	1) "3 - простое число";	низкий
ОПК-2.3,	истинными высказываниями.	2) " π - рациональное число";	
ОПК-5.1,		3) "Красноярск - столица России";	
ОПК-5.2		(4) " $a+b=2$ ";	
		5) "Число 8 делится на 2 и на 4";	
		6) "Математика - интересный предмет".	
ОПК-2.1,	2. Выберете верные определения.	1) Отрицанием высказывания А называется такое	средний
ОПК-2.3,		высказывание, которое истинно тогда и только	
ОПК-5.1,		тогда, когда высказывание А ложно;	
ОПК-5.2		2) Дизъюнкцией высказываний А и В называется	
		такое высказывание, которое истинно тогда и	
		только тогда, когда истинны оба высказывания А	
		и В;	
		3) Конъюнкцией высказываний А и В называется	
		такое высказывание, которое истинно тогда и	
		только тогда, когда истинно хотя бы одно из А	
		или В;	
		4) Импликацией высказываний А и В называется	
		такое высказывание, которое ложно тогда и	
		только тогда, когда высказывание А ложно, а	
		высказывание В истинно;	
		5) Эквивалентностью двух высказываний А и В	
		называется такое высказывание, которое истинно	
		тогда и только тогда, когда оба высказывания	
		принимают одинаковые значения.	
ОПК-2.1,	3. Выберете двухместные предикаты?	1) $x + y = 3$;	низкий
ОПК-2.3,		2) <i>x</i> - простое число;	
ОПК-5.1,		3) у - четное число;	
ОПК-5.2		4) x < y;	
		5) $x = HOД(x, y)$.	
		J) $\lambda = \Pi \cup \mathcal{A}(\lambda, y)$.	

ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	4. Выберете истинные высказывания, полученные с помощью предиката $P(x, y)$: " $x < y$ ", заданного на множестве натуральных чисел N , и навешиванием кванторов общности \forall и существования \exists на свободные переменные x, y .	1) $\forall x \forall y P(x, y)$; 2) $\forall y \forall x P(x, y)$; 3) $\exists x \exists y P(x, y)$; 4) $\exists y \exists x P(x, y)$; 5) $\forall x \exists y P(x, y)$; 6) $\exists y \forall x P(x, y)$; 7) $\exists x \forall y P(x, y)$; 8) $\forall y \exists x P(x, y)$.	высокий
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	5. Какие равенства являются верными?	1) $\forall x(P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$; 2) $\exists x(P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$; 3) $\forall x(P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$; 4) $\exists x(P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$.	высокий
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	6. При каких значениях A,B,C формула $S = (A \to B) \land C \lor \overline{(A \leftrightarrow \overline{C})} \text{ является ложной?}$	1) $A = \mathcal{I}, B = \mathcal{I}, C = \mathcal{I};$ 2) $A = U, B = \mathcal{I}, C = \mathcal{I};$ 3) $A = U, B = U, C = \mathcal{I};$ 4) $A = \mathcal{I}, B = U, C = \mathcal{I};$ 5) $A = U, B = U, C = \mathcal{I}.$	средний
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	7. Найдите множество истинности I_P предиката $P(x)$: " $(x > 2) \leftrightarrow (x < 2)$ ", заданного на множестве R .		средний
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	8. Упростите формулу $\exists x \exists y ((F(x) \to F(y)) \land (F(x) \to \overline{F}(y)) \land F(x)).$		высокий
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	9. Для примитивно рекурсивной функции f выберете правильный вариант ответа примитивно рекурсивной функции $g(x_1,x_2,x_3)=f(x_3,x_2,x_1)$.	1) $g(x_3, x_2, x_1) = f(I_2^3(x_1, x_2, x_3),$ $I_3^3(x_1, x_2, x_3), I_3^3(x_1, x_2, x_3));$ 2) $g(x_1, x_2, x_3) = f(I_3^3(x_1, x_2, x_3),$ $I_2^2(x_1, x_2, x_3), I_1^1(x_1, x_2, x_3));$	высокий

	T.		
		3) $g(x_1, x_2, x_3) = f(I_3^3(x_1, x_2, x_3),$	
		$I_2^3(x_1, x_2, x_3), I_1^3(x_1, x_2, x_3));$	
		4) $g(x_1, x_2, x_3) = f(I_3^3(x_3, x_2, x_1),$	
		$I_2^3(x_1,x_2,x_3), I_1^3(x_3,x_2,x_1)).$	
ОПК-2.1,	10. С помощью каких операторов можно	1) Оператор аннулирования;	низкий
ОПК-2.3,	сконструировать функцию, которая будет являться	2) Оператор проецирования;	
ОПК-5.1,	примитивно рекурсивной.	3) Оператор минимизации;	
ОПК-5.2		4) Оператор подстановки;	
		5) Оператор сдвига.	
OFFIC 2.1			
ОПК-2.1,	11. Какая функция $f(x, y)$ получается из функций	_	средний
ОПК-2.3,	g(x) = x и $h(x, y, z) = x + z$ с помощью примитивной		
ОПК-5.1,	рекурсии?		
ОПК-5.2	10 H	1) 7	U
ОПК-2.1,	12. Пусть дана функция $f(x, y, z) = x - y - z$ и	1) -5;	средний
ОПК-2.3,	частично рекурсивная функция	2) 5;	
ОПК-5.1,	$g(x, y) = \mu_z(f(x, y, z) = 0)$ и вычислите $g(2,7)$	3) 0;	
ОПК-5.2	12.5	4) не определено.	, , ,
ОПК-2.1,	13. В канторовской нумерации определите номер n для	_	средний
ОПК-2.3,	пары $<4,5>$.		
ОПК-5.1,			
ОПК-5.2	14 D		U
ОПК-2.1,	14. В канторовской нумерации определите пару	_	средний
ОПК-2.3,	$\langle x, y \rangle$ c номером $n = 18$.		
ОПК-5.1,			
ОПК-5.2	15 D 1 4 ()		<u>_</u>
ОПК-2.1,	15. В алфавите $A = \{a_1, a_2, a_3\}$ определите словарный	_	низкий
ОПК-2.3,	номер $n = C(\overline{x})$ слова $\overline{x} = a_2 a_1 a_2 a_1$.		
ОПК-5.1, ОПК-5.2			
	16 D 1 A 6		
ОПК-2.1,	16. В алфавите $A = \{a_1, a_2, a_3\}$ определите слово	_	средний
ОПК-2.3,	$\overline{x} = \alpha(n)$, имеющее словарный номер $n = 78$.		
ОПК-5.1,			

OFFICE 2			
ОПК-5.2 ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2 ОПК-2.3, ОПК-5.1, ОПК-5.2	17. Имеется машина Тьюринга с внешним алфавитом $A = \{\lambda, 1\}$, алфавитом внутренних состояний $Q = \{q_1, q_z\}$ и системой команд: $q_1\lambda \to q_z 1R$; $q_1 1 \to q_1 1R$. Определите, в какое слово перерабатывает машина Тьюринга, если ее начальная конфигурация имеет вид $1\lambda 1q_1 1\lambda\lambda 11$. 18. Пусть машина Тьюринга задана следующей диаграммой с внешним алфавитом $A = \{\lambda, 1, *\}$:	1) $1\lambda 111q_1\lambda 11$; 2) $1\lambda 1111\lambda 11$; 3) $1\lambda 111q_1 111$; 4) $1\lambda 111111$. 1) $q_z 111^*$; 2) $q_z 11^*$; 3) $11q_z 1$; 4) $q_z 111$.	средний
ОПК-2.1, ОПК-2.3, ОПК-5.1, ОПК-5.2	$q_1 111*$. 19. Пусть машина Тьюринга задана следующей диаграммой с внешним алфавитом $A = \{\lambda, 1\}$:	 P(x):"x — четное число", где x∈N; P(x):"x — нечетное число", где x∈N; P(x):"x делится на 2 без остатка", где x∈N; P(x):"x делится на 3 без остатка", где x∈N. 	высокий

	$\begin{array}{c c} \lambda \to \mathbf{M} \\ \hline \\ q_1 \\ \hline \\ 1 \to R \\ \hline \\ 1 \to R \\ \hline \\ 1 \to R \\ \hline \\ 1 \to \lambda L \\ \hline \\ q_2 \\ \hline \\ 1 \to \lambda L \\ \hline \\ 1 \to \lambda $		
ОПК-2.1,	Эта машина Тьюринга вычисляет следующий предикат.	1) Плобод функция вуниканимод на Тугорингу на	низкий
ОПК-2.1,	20. Выберете верные утверждения.	1) Любая функция, вычислимая по Тьюрингу, не вычислима на машине с левой полулентой.	низкии
ОПК-5.1,		2) Любая функция, вычислимая по Тьюрингу,	
ОПК-5.2		вычислима на машине с правой полулентой.	
		3) Если $f(x)$ и $g(y)$ вычислимы по Тьюрингу,	
		то функция $g(f(x))$ также вычислима по	
		Тьюрингу;	
		4) Внешний промежуточный алфавит машины	
		Тьюринга состоит только лишь из внешнего	
		алфавита исходных данных.	