Документ п іде стовоє задание одля Информация о владельце: ФИО: Косенок Сергей Михайлович Должность: ректор Дата подписания: 19.06.2024 06:53:38	за диагностического тестирования по дисциплине: Эконометрика, 4 семестр
Уникальн -Код гр направление e3a68f3 c a p1662f674b5f4k0 8099d3d6bfdcf836	38.03.01 Экономика
Направленность (профиль)	Финансы и кредит
Форма обучения	очная
Кафедра- разработчик	Экономических и учетных дисциплин
Выпускающая кафедра	Финансов, денежного обращения и кредита

Проверяемая	Задание	Варианты ответов	Тип
компетенция			сложности
			вопроса
ОПК-2.2	Перевод рассматриваемой	А) верификации	низкий
	экономической задачи на	Б) предмоделирования	
	язык математических	В) идентификации	
	терминов и соотношений	Г) спецификации	
	производится на этапе:		
ОПК-2.2	По типу используемых	А) парные и	низкий
	данных различают	множественные	
	эконометрические модели:	Б) пространственные и	
		временные	
		В) с одним уравнением и	
		системы одновременных	
		уравнений	
		Г) линейные и	
		нелинейные	
ОПК-1.2	Совокупность методов		низкий
	обнаружения наличия,		
	тесноты и направления		
	взаимосвязи между двумя		
	или более случайными		
	величинами – это		
	анализ		
ОПК-2.3	В случае если по		низкий
	результатам проверки		
	гипотез будет отвергнута		
	верная нулевая гипотеза		
	возникает ошибка рода		
ОПК-2.2	В регрессионной модели	А) свободным членом	низкий
	типа $y = a + bx + \varepsilon$	Б) угловым	
	параметр b является:	коэффициентом	

		В) случайным членом	
ОПК-2.2	Отрицательное значение коэффициента корреляции:	 Г) регрессором А) не возможно; Б) свидетельствует об отрицательной линейной связи между признаками; В) свидетельствует о нелинейной связи между признаками; Г) свидетельствует о выражении значений признаков в отрицательной шкале 	средний
ОПК-2.2	Для корректного применения метода наименьших квадратов при формировании регрессионных моделей должны соблюдаться условия:	А) Тесная связь остатков модели друг с другом Б) Равенство нулю математического ожидания остатков модели В) Минимум суммы остатков модели Г) Постоянство дисперсии остатков модели Д) Максимум суммы квадратов остатков модели Е) Независимость остатков модели от регрессоров	средний
ОПК-2.3	Установите соответствие между компонентом множественной регрессионной модели и формулой его расчета:	Вектор коэффициентов регрессии — (X ^T X)-1X ^T Y Сумма квадратов остатков модели — (Y — XB) ^T (Y — XB) Вектор наблюдений зависимой переменной — XB + E Общая сумма квадратов зависимой переменной — ESS + RSS	средний
ОПК-5.2	Установите соответствие между эконометрическим показателем и используемой для его расчета функцией в MS Excel	Критическое значение статистики Фишера – FPACПОБР Значение p-value для статистики Фишера – F.PACП.ПХ	средний

		0 0	
		Свободный член	
		эконометрической модели	
		– ОТРЕЗОК	
		Значение в соответствии с	
		линейной	
		аппроксимацией по	
		методу наименьших	
		квадратов —	
		ТЕНДЕНЦИЯ	
ОПК-2.2	Отношение коэффициента	A) t-статистики	средний
	регрессии к его	Стьюдента	1
	стандартной ошибке,	Б) F-статистики Фишера	
	вычисленное по модулю –	В) статистики χ^2	
	это расчетное значение:	Г) уровня значимости α	
ОПК-2.3	Значение статистики	A) -1	средний
01111-2.3	Дарбина-Уотсона,	Б) 0	ородини
	соответствующее	B) 1	
	•	· ·	
	отрицательной	Γ) 2	
	автокорреляции остатков	Д) 4	
0.000	эконометрической модели:		
ОПК-2.2	Неоднородность		средний
	дисперсии остатков		
	регрессионной		
	эконометрической модели		
	– это		
ОПК-2.2	Наличие сильной		средний
	линейной взаимосвязи		
	между регрессорами в		
	эконометрической модели		
	- это		
ОПК-2.3	По выборке из 40		средний
	наблюдений по двум		
	переменным Х и Ү		
	получены следующие		
	результаты расчетов:		
	среднее значение		
	переменной Х равно 10,		
	среднее значение		
	переменной У равно 30,		
	среднее значение		
	произведения переменных		
	Х и У равно 100. Тогда		
	выборочная ковариация		
	между переменными X и Y составит:		
ОПК-2.3			ороличи
OHK-2.3	По выборке из 38		средний
	наблюдений рассчитан		
	парный коэффициент		

			1
	корреляции между		
	переменными Х и Ү. Его		
	значение составило 0,8.		
	Определите значение t-		
	статистики Стьюдента для		
	коэффициента корреляции		
ОПК-2.2	Расположите в правильной	1) Постановочный	высокий
	последовательности этапы	2) Априорный	
	эконометрического	3) Информационно-	
	анализа:	статистический	
		4) Спецификация	
		модели	
		5) Идентификация	
		модели	
		6) Верификация	
		модели	
ОПК-2.2	Расположите в правильной	1) Ранжирование	высокий
	последовательности этапы	наблюдений по	
	проверки статистического	значениям	
	ряда на	регрессора	
	гетероскедастичность	2) Построение модели	
	остатков с использованием	парной линейной	
	теста ранговой корреляции	регрессии	
	Спирмена	3) Расчет случайных	
		остатков	
		4) Расчет рангов	
		модулей остатков	
		модели	
		5) Расчет квадратов	
		разностей рангов	
		регрессора и	
		остатков модели	
		6) Расчет рангового	
		коэффициента	
		корреляции	
		Спирмена	
		7) Оценка значимости	
		коэффициента	
		корреляции	
		8) Оценка выполнения	
		условия	
		гомоскедастичности	
ОПК-5.2	В рамках языка	A) lm (formula, data)	высокий
	программирования R,	Б) line.strip (n, a)	
	используемого для	B) code.append (x, y, b)	
	эконометрической	Γ) data.frame (col1, col2,	
	обработки данных,	col3)	
		Д) plot (x, y)	

	используются команды и	E) self.func (data, line)	
	функции:		
ОПК-2.3	Условия точной	A) $D + 1 < H$	высокий
	идентифицируемости или	\mathbf{b}) D + 1 = H	
	сверхидентифицируемости	B) $D + 1 > H$	
	эконометрических	Γ) D – 1 < H	
	уравнений в системе	Д) D - 1 = H	
	можно проверить по		
	формулам:		
ОПК-2.2	Динамические	А) любые регрессионные	высокий
	эконометрические модели:	модели	
		Б) ранговые модели	
		В) модели с	
		распределенными лагами	
		Г) модели с фиктивными	
		переменными	
		Д) авторегрессионные	
		модели	