Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 20.06.2025 06:17:01 Уникальный программный ключ:

еза68f3eaa1e Опено тивте материалы для промежуточной аттестации по дисциплине:

Атомная и ядерная физика, СЕМЕСТР 6

Код, направление подготовки	03.03.02 Физика	
Направленность (профиль)	Цифровые технологии в геофизике	
Форма обучения	очная	
Кафедра-разработчик	Кафедра экспериментальной физики	
Выпускающая кафедра	Кафедра экспериментальной физики	

Типовые задания для контрольной работы (6 семестр)

Вариант 1

- 1. Показать возможные энергетические уровни атома с электроном в состоянии с главным квантовым числом равным 6, если атом помещен во внешнее магнитное поле.
- 2. Во сколько раз увеличиться радиус орбиты электрона у атома водорода, находящегося в основном состоянии, при возбуждении его фотоном энергии 12.09 эВ?
- 3. Определить механический момент молекулы O₂ в состоянии с вращательной энергией 2.16 мэВ? d=121 пм.

Вариант 2

- 1. Записать возможные значения орбитального квантового числа и магнитного квантового числа для главного квантового числа равного 4.
- 2. Какую работу нужно совершить, чтобы удалить электрон со второй орбиты атома водорода за пределы притяжения его ядром?
- 3. Определите, во сколько раз орбитальный момент импульса электрона, находящегося в f состоянии, больше, чем для электрона в p состоянии?

Типовые задания к экзамену по дисциплине (6 семестр) Проведение промежуточной аттестации в 6семестре в виде экзамена. Задания на экзамене содержат 2 теоретических вопроса и задачу.

Задание для показателя оценивания дискриптора	Вид	Проверяемые
«Знает»	задания	компетенции
Вариант 1	теоретичес	ОПК-1
1. Гипотеза де Бройля и ее опытная	кий,	
проверка.	вопросы к	
2. Модель атома Резерфорда.	экзамену	
Вариант 2		
1. Принцип неопределенностей Гейзенберга.		
2. Модель атома Томсона.		
Panuaux 3		
Вариант 3 1. Волновая функция частицы.		
2. Модель атома Бора.		
2. Модель атома вора.		
Вариант 4		
1. Уравнение Шредингера для квантовой		
механики.		
2. Обобщенная серия Бальмера.		
, 1		
Вариант 5		
1. Частица в прямоугольной потенциальной		
яме.		
2. Постулаты теории Бора.		
Вариант 6		
1. Прохождение частицы сквозь		
потенциальный барьер.		
2. Достоинства и недостатки модели Бора.		
Вариант 7		
1. Квантовый гармонический осциллятор.		
2. Атом водорода в квантовой механике.		
2. Ттом водорода в квантовон механике.		
Вариант 8		
1. Свойства волн де Бройля.		
2. Квантовые числа.		
Вариант 9		
1. Квантовая статистика Бозе-Эйнштейна.		
2. Основное состояние в атоме водорода.		
Panyaux 10		
Вариант 10		
1. Квантовая статистика Ферми-Дирака.		
2. Волновая функция и плотность		
вероятности.		
Вариант 11		
որրա <u>աս 11</u>		<u> </u>

1. γ-распад. Орбитальный и магнитный моменты импульса электрона.

Вариант 12

- 1. Эффект Джозефсона.
- 2. Собственный момент импульса электрона.

Вариант 13

- 1. Несохранение чётности в слабых взаимодействиях.
- 2. Принцип Паули. Электронные оболочки атома.

Вариант 14

- 1. Понятие пространственной четности и внутренней четности элементарных частиц и ядер.
- 2. Периодическая таблица элементов.

Вариант15

- 1. β-распад. Его разновидности и особенности.
- 2. Мультиплетность спектров и спин электрона.

Вариант 16

- 1. α-распад и его особенности
- 2. Результирующий механический момент многоэлектронного атома.

Вариант 17

- 1. Основные положения капельной модели ялра.
- 2. Магнитный момент атома. Магнетон Бора. Фактор Ланде.

Вариант18

- 1. Определение размеров ядер. Сечение рассеяния.
- 2. Молекула. Энергия молекулы в квантовой механике.

Вариант 19

- 1. Радиоактивность. Виды радиоактивности. Общие закономерности радиоактивных распадов
- 2. Комбинационное рассеяние света.

Вариант 20

- 1. Удельная энергия связи.
- **2.** Спонтанное и вынужденное излучение. *Инв*ерсная населенность. Лазеры

Задание для показателя оценивания дискриптора «Знает» и «Умеет»	Вид задания
Вариант 1 Задача. Определить энергию фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на второй.	практический, задачи к экзамену
Вариант 2 Задача. Определить длину волны, соответствующей второй спектральной линии в серии Пашена.	
Вариант 3 Задача. Электрон выбит из атома водорода, находящегося в основном состоянии, фотоном энергии 17,7 эВ. Определить скорость электрона за пределами атома.	
Вариант 4 Задача. Фотон с энергией 12,12 эВ, поглощенный атомом водорода, находящимся в основном состоянии, переводит атом в возбужденное состояние. Определить главное квантовое число этого состояния.	
Вариант 5 Задача. Определить первый потенциал возбуждения атома водорода.	
Вариант 6 Задача. Определить, на сколько измениться кинетическая энергия электрона в атоме водорода при излучении атомом фотона с длиной волны 486 нм.	
Вариант 7 Задача. Показать возможные энергетические уровни атома с электроном в состоянии с главным квантовым числом равным 6, если атом помещен во внешнее магнитное поле.	
Вариант 8 Задача. Определить постоянную распада некоторого вещества, если известно, что за час интенсивность испускаемого им β — излучения уменьшилась на 10%. Продукт распада не радиоактивен.	
Вариант 9 Задача. Энерговыделение в реакции $_1H^2 + _8O^{16} \rightarrow _2He^4 + _7N^{14}$ равно Q=3 МэВ. Энергия ядер $_1H^2$, бомбардирующих кислород (его ядра можно	

бомбардирующих кислород (его ядра можно

считать покоящимися), равна 2,1 МэВ. Найти максимальную кинетическую энергию ядер $_2$ He 4 (α -частиц), возникающих в этой реакции.

Вариант 10

Задача. Записать возможные значения орбитального квантового числа и магнитного квантового числа для главного квантового числа равного 4.

Вариант 11

Задача. Период полураспада радия равен

 $T_{1/2} = 1620^{y}$. Сколько атомов радия распадается в 1 секунду в 1 г препарата радия?

Вариант 12

Задача. Определите, во сколько раз орбитальный момент импульса электрона, находящегося в f состоянии, больше, чем для электрона в p состоянии?

Вариант 13

Задача. Определить длину волны спектральной линии, соответствующей переходу электрона в атоме водорода с шестой боровской орбиты на вторую.

Вариант 14

Задача. Определить минимальную энергию, необходимую для разделения ядра O^{16} на α - частипы.

Вариант 15

Задача. Определить скорость электрона на третьей орбите атома водорода.

Вариант 16

Задача. Определить среднюю плотность ядерного вещества, считая, что радиус ядра $R = 1, 2A^{1/3}$ Fm, удельная энергия связи $\varepsilon_{ce} = 8,5$ МэВ, а средняя масса нуклона $\overline{m} = 938,9$ МэВ.

Вариант 17

Задача. Определить потенциал ионизации атома водорода.

Вариант 18

Задача. Принимая, что электрон находится внутри атома водорода, определить неопределенность энергии этого электрона.

Вариант 19

Задача. Частица в одномерной прямоугольной потенциальной яме шириной 10^{-10} м с бесконечно высокими стенками находится в основном состоянии. Определить вероятность обнаружения частицы в левой трети ямы.

Вариант 20

Задача. В атоме вольфрама электрон перешел и Моболочки на L-оболочку. Принимая постоянную экранирования равной 5,63, определить энергию испущенного электрона.