Документ подписан простой электронной подписью

Информаци Опеночные материалы для промежуточной аттестации по дисциплине:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 18.06.2025 09:38:11 Основы теории телетрафика (5 курс)

Дата подписания: 18.06.2023 09:38:11	на подписания: 18.00.2025 09:58:11 Основы теории телетрифики (5 курс)					
Уникальны К тонграмин рависние e3a68f3eaa1e62674b54f4998099d3d6bfdcf836	11.03.02 Инфокоммуникационные технологии и					
подготовки	системы связи					
Направленность	Телекоммуникационные системы и сети					
(профиль)	информационных технологий					
Форма обучения	Заочная					
Кафедра-	Радиоэлектроники и электроэнергетики					
разработчик						
Выпускающая	Радиоэлектроники и электроэнергетики					
кафедра						

1. КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

на выполнение студентами заочного отделения контрольной работы «Проектирование системы коммутации С-12»

В таблице 1 приведены варианты заданий на проектирование системы C-12 для её работы в качестве районированной ATC в составе ГТС, включающую три ATC электронного типа (в том числе и проектируемую C-12), одну координатную ATC и подстанцию, включённую в систему C-12.

Варианты заданий на выполнение контрольной работы

	• • •				
№ п/п	Natcə	Nnc	Nатску	N _{ATC} 31	Natc ₃₂
1 вариант	10300	100	7100	12500	7300
2 вариант	12500	230	8800	16700	9500
3 вариант	14100	270	10300	20200	11500
4 вариант	16700	340	12700	13900	8500
5 вариант	18600	510	11900	15100	8100
6 вариант	20200	80	6600	17600	12100
7 вариант	11800	130	7900	10900	7900
8 вариант	13900	490	11100	12100	11900
9 вариант	15100	320	12100	14900	10300
10 вариант	17600	270	10800	16200	7100

В исходные данные вариантов заданий входят:

- проектная номерная ёмкость АТСЭ N_{АТСэ}
- номерная ёмкость подстанции Nnc
- номерная ёмкость существующей координатной АТС N_{АТСку}
- номерные ёмкости существующих электронных ATC $N_{ATC=1}$, $N_{ATC=2}$

Структурный состав абонентов всех АТС сети соответствует таблице 2.

Таблица 2 Структурный состав абонентов

Таблица 1

No	Категории источников нагрузки	К, %	
1	Народнохозяйственный сектор,	42	
	ТА с частотным набором, %	40	
2	Квартирный сектор,	56	
	ТА с частотным набором, %	50	
3	Таксофоны,	2	
	ТА с частотным набором, %	70	

Параметры исходящей нагрузки для абонентов и допустимые потери вызовов в сети соответствуют нормам технологического проектирования НТП 112-2000 для пятизначной нумерации абонентских линий, приведённым в приложениях 1, 2, 3.

Содержание контрольной работы включает в себя расчёт интенсивности нагрузки, расчёт интенсивности нагрузки по направлениям, расчёт объёма оборудования. В перечень графического материала работы входит составление функциональной схемы АТС.

2. ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ

Разлел 1:

- 1.1. Предметная область теории телетрафика.
- 1.2. Основные определения в теории телетрафика. Характеристики входных потоков, механизма обслуживания, дисциплины обслуживания, выходного потока.
- 1.3. Модель Д. Кендалла. Основные законы распределений. Поток с последействием. Поток с простым последействием. Поток с ограниченным последействием. Рекуррентный поток.
- 1.4 Способы определения и задания потоков вызовов. Простейшая классификация потоков.
- Детерминированный поток вызовов. Случайный поток вызовов. Способы задания случайного потока вызовов моментами наступления вызовов; промежутками между поступлениями вызовов; число вызовов в интервале времени.
- 1.5. Основные свойства потоков вызовов: Стационарность; Ординарность; Отсутствие последействия.
- 1.6. Основные характеристики потоков вызовов. Интенсивность; Параметр.
- 1.7. Простейшие потоки вызовов и его свойства. Расчет вероятности К «занятых» ОП. Распределение Пуассона. Графики распределения Пуассона.
- 1.8 Математическое ожидание и дисперсия простейшего потока вызовов. Относительная колеблемость (изменяемость) потока. Эффективность использования системы. Объединение и разъединение потоков.
- 1.9 Законы распределения промежутков между вызовами простейшего потока. Математическое ожидание промежутков времени. Свойства показательного закона распределения
- 1.10 Длительность обслуживания. Поток освобождений. Постоянная длительность обслуживания. Случайная длительность обслуживания Вероятность освобождения хотя бы одного ОП. Вероятность не освобождения ни одного ОП.

Раздел 2:

- 2.1 Определение телефонной нагрузки. Формула и единицы измерения обслуженной нагрузки. Поступившая нагрузка. Потерянная нагрузка. Теорема о качественной оценки интенсивности поступающей нагрузки. Теорема о качественной оценки интенсивности обслуженной нагрузки. Суммарное время занятий. Мгновенная нагрузка.
- 2.2 Основные параметры нагрузки. Число источников нагрузки и их категории. Среднее число вызовов от одного источника. Требования к проектированию. Виды соединений. Успешные и безуспешные. Вероятности успешных и безуспешных занятий. Средняя длительность занятий. Инженерный метод расчета средней длительности занятий. Удельная нагрузка на одну абонентскую линию.
- 2.3 Концентрация телефонной нагрузки. Колебания нагрузки по часам суток. Период наибольшей нагрузки. Час наибольшей нагрузки. Измерение трафика. Измерения интенсивности трафика. Статистический фиксированный ЧНН.
- 2.4 Способы распределения нагрузки. Интенсивность на входе и на выходе степеней искания. Расчет нагрузки. Пропорциональный способ распределения нагрузки. Теорема Фалеса. Коэффициенты тяготения. Пример расчета телефонной нагрузки.
- 2.5 Оценка результатов измерения нагрузки. Понятие о доверительной вероятности и доверительном интервале. Свойства оценки. Несмещенность, состоятельность, эффективность.

Раздел 3:

- 3.1. Обслуживание простейшего потока вызовов (вывод первой формулы Эрланга). Постановка задачи.
- 3.2. Дифференциальные уравнения Эрланга. Макро- и микросостояния пучка. Диаграмма состояний и переходов процесс рождения и гибели.
- 3.3. Стационарный режим. Распределение Эрланга.
- 3.4. Потери в полнодоступном пучке при обслуживании простейшего потока вызовов.
- 3.5. Рекуррентная формула Эрланга.
- 3.6. Средняя пропускная способность линий полнодоступного пучка.
- 3.7. Графические зависимости между параметрами первой формулы Эрланга.
- 3.8. Обслуживание полнодоступного пучка потока от ограниченного числа источников нагрузки (формула Энгсета). Потери по времени, потери по вызовам, потери по нагрузке.

- 3.9. Сравнение пропускной способности полнодоступного пучка при простейшем и Энгсетовском потоках.
- 3.10. Обслуживание простейшего потока вызовов полнодоступным пучком с ожиданием. Постановка задачи, входной поток, обслуживающие приборы, дисциплина обслуживания. Вероятность состояний. Диаграмма рождения и гибели. Вторая формула Эрланга. Закон распределения времени ожидания. Среднее время ожидания для поступающего вызова. Среднее время ожидания для ожидающего вызова. Вероятность очереди. Средняя длина очереди или среднее число задержанных вызовов.
- 3.11. Системы с ожиданием при постоянной длительности обслуживания.
- 3.12. Расчет пропускной способности управляющих устройств.
- 3.13. Комбинированная система обслуживания. Ограниченное число мест для ожидания (с ограниченной длиной очереди).
- 3.14. Расчет систем с повторными вызовами.
- 3.15. Основные характеристики НПД включений. Доступность линий. Необходимость НПД. Нагрузочная группа. Коэффициент уплотнения. Матрица связности. Порядок искания.
- 3.16. Типы НПД включений и выбор их структуры. Ступенчатые и равномерные. Типы ступенчатых включений: прямое ступенчатое включение, коэффициент блокировки, ступенчатое включение с перехватом, ступенчатое включение со сдвигом. Выбор структуры ступенчатых НПДС. Равномерное включение. Выбор структуры при равномерном включении.
- 3.17. Идеально-симметричные неполнодоступные схемы.
- 3.18. Формула Эрланга для идеальной НПД схемы. Третья формула Эрланга. Постановка задачи, коммутационная схема, дисциплина обслуживания, вероятности состояний. Вероятность потерь (третья формула Эрланга).
- 3.19. Приближенные методы расчета пропускной способности НПД схем. Упрощенный метод Эрланга, метод О'Делла, приближенная формула Пальма-Якобеуса.
- *Примечание: сопроводительный курс 11.03.02. Основы теории телетрафика https://moodle.surgu.ru/course/view.php?id=120