Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Очтеновчные материалы для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 22.06.2024 08:56:22

Уникальный программный ключ: МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

4 CEMECTP

Код, направление	04.03.01	
подготовки	Химия	
Направленность		
(профиль)	Инфохимия	
Форма обучения	Очная	
Кафедра-разработчик	Экспериментальной физики	
Выпускающая кафедра	Химии	

Типовые варианты заданий для контрольной работы:

1 вариант

- 1. В баллоне вместимостью V=25 л находится водород при температуре T=290 К. После того как часть водорода израсходовали, давление в баллоне понизилось на $\Delta p=0,4$ МПа. Определить массу m израсходованного водорода.
- 2. Смесь гелия и аргона находится при температуре T=1,2 кК. Определить среднюю квадратичную скорость $< v_{\text{кв}} >$ атомов гелия и аргона.
- 3. Моль кислорода, занимавший объем V_1 =1 л при температуре T=173 К, расширился изотермически до объема V_2 =9,712 л. Найти: а) приращение внутренней энергии газа ΔU ; б) работу A, совершенную газом; в) количество тепла Q, полученное газом. Газ рассматривать как реальный.

2 вариант

- 1. В колбе вместимостью $V=100~{\rm cm}^3$ содержится некоторый газ при температуре $T=300~{\rm K}$. На сколько понизится давление p газа в колбе, если вследствие утечки из колбы выйдет $N=10^{20}$ молекул?
- 2. Найти среднюю длину свободного пробега <*l*> молекул азота при условии, что его динамическая вязкость η =17 мкПа·с.

Совершая замкнутый процесс, газ получил от нагревателя количество теплоты Q_1 =4 кДж. Определить работу A газа при протекании цикла, если его термический к.п.д. η =0,1.

3 вариант

- 1. Пылинки, взвешенные в воздухе, имеют массу $m=10^{-18}$ г. Во сколько раз уменьшится концентрация n при увеличении высоты на $\Delta h=10$ м? Температура воздуха T=300 К.
- 2. Определить среднюю арифметическую скорость $\langle v \rangle$ молекул газа , если их средняя квадратичная скорость $\langle v_{\text{кв}} \rangle = 1$ км/с.
- 3. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу расширения газа.

4 вариант

- 1. Сколько молекул газа содержится в баллоне вместимостью V=30 л при температуре T=300 К и давлении p=5 МПа?
- 2. Средняя длина свободного пробега < l> молекулы углекислого газа при нормальных условиях равна 40 нм. Определить среднюю арифметическую скорость < v> молекул.
- 3. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу A расширения газа и полученное газом количество теплоты Q.

Типовой перечень вопросов к защите лабораторных работ

«Измерение коэффициента теплопроводности воздуха методом нагретой нити»:

- Что такое теплопроводность? Объяснить это явление на основании положений молекулярнокинетической теории.
- Записать закон Фурье для теплопроводности и дать его формулировку.
- Определить физический смысл градиента температуры?
- Какой физический смысл имеет коэффициент теплопроводности? От чего он зависит?
- Что такое поток тепла, куда он направлен?
- Что такое явление переноса? Какие явления переноса вы знаете.
- Выведите рабочую формулу.
- Как рассчитываются в данной работе температура, сопротивление и мощность, выделяемая на вольфрамовой проволоке при изменении тока в цепи? Как зависит сопротивление проволоки от температуры?

«Измерение удельной теплоемкости воздуха при постоянном давлении»:

- Что называют числом степеней свободы (молекулы)?
- Сколько и какие степени свободы имеет двух, трех, четырехатомные молекулы?
- Какой газ называют идеальным?
- Что такое внутренняя энергия идеального газа и как она зависит от числа степеней свободы молекул, составляющих газ?
- Сформулировать и записать первое начало термодинамики.
- Дать определение изохорному и изобарному процессам (графическое изображение и их характеристики).

- Что такое теплоемкость? Как она зависит от способа нагревания газа?
- Вывести формулы для определения молярной теплоемкости при изохорном и изобарном процессах.
- Дать определение молярной теплоемкости, удельной теплоемкости, показать связь между ними.
- Объяснить методику измерения теплоемкости воздуха при постоянном давлении методом протока.

«Определение изменения энтропии при фазовом переходе»:

- Что такое фаза, фазовый переход?
- Что такое фазовый переход первого рода?
- Чем отличается фазовый переход первого рода от фазового перехода второго рода?
- Из чего складывается внутренняя энергия твердого тела?
- Объясните процессы плавления и кристаллизации.
- Почему температура тела при плавлении и кристаллизации остается постоянной?
- Нарисуйте диаграмму плавления и дайте характеристику происходящим процессам.
- Что такое энтропия? Сформулируйте физический смысл этого понятия.
- В чем заключается статистический смысл энтропии?
- Как меняется энтропия при плавлении, при кристаллизации?

«Определение отношения изобарной и изохорной теплоемкостей газа»:

- Что такое теплоемкость газа? Какова размерность этой величины?
- Дать определения молярной теплоемкости и удельной теплоемкости.
- Сколько степеней свободы у молекул Не, Н2, СО2? Какие это степени свободы?
- Какова связь между C_p и C_v и числом степеней свободы молекул газа i? Вывести формулы из первого начала термодинамики.
- Нарисовать качественно зависимость теплоемкости двухатомного газа от температуры?
- В каком газе у имеет наибольшее значение в He, H₂, CH₄?
- Дать определения изопроцессам. Представить их графически.
- Какой процесс называется адиабатическим? Запишите уравнение Пуассона для этого процесса?
- Объяснить методику определения ү.

«Определение коэффициента внутреннего трения жидкости»:

- Что называется вязкостью? Каков механизм вязкости жидкости?
- Напишите уравнение движения шарика в цилиндре, заполненном вязкой жидкостью.
- Какое движение называется ламинарным, турбулентным?
- Как зависит вязкость жидкости от температуры и относительной молекулярной массы?
- Какой физический смысл имеет коэффициент внутреннего трения (вязкости) ?
- Какие силы действуют на шарик, падающий в жидкости?
- Как в данной работе определяется коэффициент вязкости?

«Определение коэффициента внутреннего трения и средней длины свободного пробега молекул воздуха»:

- Как определяется средняя длина свободного пробега молекул? Как она зависит от температуры, от давления?
- Какова природа явлений переноса? Какие явления переноса вы знаете?
- Записать формулу для потока импульса.
- Чем обусловлено внутреннее трение (вязкость) газа?
- В какой части экспериментальной установки возникает исследуемое вопыте явление переноса?
- В каком направлении происходит перенос импульса?
- Определите физический смысл коэффициента динамической вязкости. Как зависит η от давления и температуры газа?
- Как определяется кинематическая вязкость?
- Когда возникает сила внутреннего трения? От чего она зависит?
- Выведите формулу для расчёта коэффициента динамической вязкости.
- Как определяется объем воздуха, проходящего через капилляр?
- Как определяется разность давлений, возникающих на концах капилляра?

«Изучение распределения Больцмана и определение работы выхода электронов из металла в вакуум»:

- Что называется распределением Больцмана?
- Сколько значений потенциальной энергии частиц реализуется в экспериментальной установке, применяемой в данной работе?
- Представить распределение Больцмана графически и указать на графике область изменения параметров системы в данной работе.
- Что общего и в чем различие распределений Больцмана, Максвелла?

«Изучение распределения Максвелла»:

- Как определить наиболее вероятную, среднюю и среднеквадратичную скорости молекул идеального газа из распределения Максвелла по скоростям?
- Какой вид имеет рабочая формула в данной работе? Запишите ее.
- В каких переменных строится график в данной работе?
- Что служит причиной возникновения тока в анодной цепи?
- Каким образом можно изменять задерживающую разность потенциалов при заданном напряжении накала?
- Изменяется ли величина задерживающей разности потенциалов при изменении напряжения накала? Почему?
- Каким образом изменяют температуру катода в данной работе?

«Определение коэффициента теплопроводности металла»

• Какое явление называется теплопроводностью? Запишите его уравнение. Что характеризует

градиент температуры?

- Что является переносчиком тепловой энергии в металлах?
- Какой режим является стационарным? Получите уравнение, описывающее этот режим.
- Выведите формулу для коэффициента теплопроводности.
- Каков метод измерения теплопроводности в данной работе?

Этап: проведение промежуточной аттестации по дисциплине

Задание для показателя оценивания дескриптора	David and access
«Знает»	Вид задания теоретический
1. Статистический и термодинамический методы.	
2. Основные понятия молекулярной физики и	
термодинамики.	
3. Уравнение состояния идеального газа.	
4. Основное уравнение молекулярно-кинетической теории.	
5. Физический смысл температуры. Закон Дальтона.	
6. Степени свободы. Гипотеза о равнораспределении энергии	
по степеням свободы.	
7. Внутренняя энергия идеального газа.	
8. Распределение Максвелла.	
9. Опытная проверка распределения Максвелла.	
10. Характерные скорости.	
11. Формула Максвелла в приведенном виде.	
12. Зависимость распределения Максвелла от температуры.	
13. Распределение по энергиям молекул.	
14. Распределение Больцмана.	
15. Барометрическая формула.	
16. Закон распределения Максвелла-Больцмана.	
17. Явления переноса в термодинамически неравновесных	
средах.	
18. Эмпирические уравнения процессов переноса.	
19. Средняя длина свободного пробега молекул.	
20. Молекулярно-кинетическая интерпретация явлений	
переноса. Анализ коэффициентов переноса.	
21. Первое начало термодинамики.	
22. Работа газа при изменении его объема.	
23. Теплоемкость идеального газа.	
24. Молярная теплоемкость при постоянном объеме.	
25. Молярная теплоемкость при постоянном давлении.	
Постоянная адиабаты.	
26. Применение первого начала термодинамики к	

изопроцессам.

- 27. Адиабатический процесс.
- 28. Политропические процессы.
- 29. Второе начало термодинамики.
- 30. Обратимые и необратимые процессы.
- 31. Энтропия. Свойства энтропии.
- 32. Изменение энтропии в изопроцессах.
- **33.** Круговой процесс. Термический коэффициент полезного действия для кругового процесса. Цикл Карно.
- 34. Статистический смысл второго начала термодинамики.
- **35.** Энтропия и вероятность.
- 36. Уравнение Ван-дер-Ваальса.
- 37. Энергия ван-дер-ваальсовского газа.
- 38. Изотермы Ван-дер-Ваальса. Метастабильные состояния.
- **39.** Дифференциальный эффект Джоуля-Томсона. Интегральный эффект Джоуля-Томсона.
- 40. Эффект Джоуля-Томсона в газе Ван-дер-Ваальса.
- 41. Фазовые переходы. Диаграмма состояний.
- 42. Уравнение Клапейрона-Клаузиуса.
- 43. Жидкое состояние. Поверхностное натяжение
- 44. Давление под изогнутой поверхностью.
- **45.** Явления на границах между средами. Капиллярные явления.
- **46.** Кристаллическое состояние. Физические типы кристаллов.
- 47. Теплоёмкость твердых тел. Классическая модель.
- 48. Теплоёмкость твердых тел. Модель Эйнштейна.
- 49. Теплоёмкость твердых тел. Модель Дебая.
- **50.** Квантовые статистики. Квантовые распределения. Особенности распределений.

Задание для показателя оце

Задание для показателя оценивания дескриптора	Вид задания
«Умеет», «Владеет»	
Вариант 1.	практический
Задача. В баллоне вместимостью $V=25$ л находится водород	
при температуре T =290 К.После того как часть водорода	
израсходовали, давление в баллоне понизилось на Δp =0,4	
МПа. Определить массу m израсходованного водорода.	
Вариант 2.	
Задача. В колбе вместимостью $V=100~{\rm cm}^3$ содержится	
некоторый газ при температуре T =300 К.На сколько понизится	

давление p газа в колбе, если вследствие утечки из колбы выйдет $N=10^{20}$ молекул?

Вариант 3.

Задача. Смесь гелия и аргона находится при температуре T=1,2 кК. Определить среднюю квадратичную скорость $< v_{KB} >$ атомов гелия и аргона.

Вариант 4.

Задача. Пылинки в воздухе имеют массу $m=10^{-18}$ г. Во сколько раз уменьшится концентрация n при увеличении высоты на $\Delta h=10$ м? Температура воздуха T=300 К.

Вариант 5.

Задача. Найти среднюю длину свободного пробега $<\lambda>$ молекул азота при условии, что его динамическая вязкость $\eta=17$ мкПа·с.

Вариант 6.

Задача. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу расширения газа.

Вариант 7.

Задача. Кислород, занимавший объем V_1 =1 л под давлением p_1 =1,2 МПа, адиабатно расширился до объема V_2 =10 л. Определить работу A расширения газа.

Вариант 8.

Задача. При изотермическом расширении водорода массой m=1 г, имевшего температуруT=280 K, объем газа увеличился в три раза. Определить работу A расширения газа и полученное газом количество теплоты Q.

Вариант 9.

Задача. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты Q_1 =4 кДж. Определить работу A газа при протекании цикла, если его термический к.п.д. η =0,1.

Вариант 10.

Задача. Масса m=10 г кислорода нагревается от температуры T_1 =323 К до температуры T_2 =423 К. Найти изменение энтропии ΔS , если нагревание происходит: а) изохорически; б) изобарически.

Вариант 11.

Задача. В закрытом сосуде объемом V=0,5 м 3 находится v=0,6 кмоль углекислого газа при давлении p=3 МПа. Пользуясь уравнением Ван — дер — Ваальса, найти, во сколько раз надо увеличить температуру газа, чтобы давление увеличилось

вдвое.

Вариант 12.

Задача. Моль кислорода, занимавший объем V_1 =1 л при температуре T=173 K, расширился изотермически до объема V_2 =9,712 л. Найти: а) приращение внутренней энергии газа ΔU ; б) работу A, совершенную газом; в) количество тепла Q, полученное газом. Газ рассматривать как реальный.

Вариант 13.

Задача. Из баллона со сжатым кислородом объемом 100 л изза неисправности крана вытекает газ. При температуре 273 К манометр на баллоне показывал давление $2 \cdot 10^6$ Па. Через некоторое время при температуре 300 К манометр показал то же давление. Сколько газа вытекло из баллона?

Вариант 14.

Задача. Баллон содержит 0,3 кг гелия. Абсолютная температура в баллоне уменьшилась на 10%, масса газа тоже уменьшилась. В результате давление упало на 20%. Сколько молекул гелия ушло из баллона?

Вариант 15.

Задача. В закрытом сосуде объемом 33,6 дм³ находятся азот и один моль водяного пара. Температура 100 °C, давление $2 \cdot 10^5$ Па. Определите массу азота в сосуде.

Вариант 16.

Задача. Двухатомному газу сообщено количество теплоты Q=2,093 кДж. Газ расширяется при постоянном давлении. Найти работу A расширения газа.

Вариант 17.

Задача. Азот находится в закрытом сосуде объемом V=3 л при температуре T_1 =300 К и давлении p_1 =300 кПа. После нагревания давление в сосуде стало p_2 =2,5 МПа. Определить температуру T_2 азота после нагревания и теплоту Q, сообщенную азоту.

Вариант 18.

Задача. В баллоне вместимостью V=6 л находится кислород массой m=8 г. Определить количество вещества n и число N молекул газа.

Вариант 19.

Задача. Аэростат массой m = 500 кг начал опускаться с ускорением a = 0.25 м/с². Найти массу балласта, который надо сбросить за борт, чтобы аэростат получил такое же ускорение, но направленное вертикально вверх. Сопротивление воздуха не учитывать.

Вариант 20. Задача. Газ при температуре T = 319 K и давлении p = 0.7 Мпа имеет плотность $\rho = 16 \text{ кг/м}^3$. Определить относительную молекулярную массу Mr газа.