
Информация о владельце:	д для промежуточной аттестации по дисциплине пргетические системы и сети 3,4 курс
Уникаль Код ро намравление e3a68t3 pad;f6267db5df4 998099d3d6bfdcf836	13.03.02 Электроэнергетика и электротехника
Направленность (профиль)	Электроэнергетические системы и сети
Форма обучения	заочная
Кафедра-разработчик	Радиоэлектроники и электроэнергетики
Выпускающая кафедра	Радиоэлектроники и электроэнергетики

Типовые задания для контрольной работы:

Для электрической сети, показанной на рисунке 1 необходимо выполнить:

- 1. Построить схему замещения и выполнить расчет параметров элементов сети.
- 2. Рассчитать параметры установившегося режима для максимальных нагрузок.
- 3. Определить потери электроэнергии за сутки и за год, рассчитать к.п.д передачи по энергии, если известен суточный график нагрузки (в процентах от максимума).

Данные для различных вариантов приведены в таблице 1.

Таблица 1.

№	ЛЭП1	T1 –	Нагрузка Р,	U ₆ , кВ	Номер
	Число	количество,	MBτ/cosφ _н		графика
	цепей/1, км	марка	·		нагрузки
1	2 AC – 150	2 ТРДЦН –	50/0,83	117	4
	35 км	63000/110			
2	2 AC – 240	2 ТРДЦН –	100/0,91	222	3
	80 км	100000/220			
3	3 AC – 120	2 ТРДН –	40/0,8	118	2
	40 км	40000/110			
4	2 AC – 300	2 ТРДЦН –	70/0,88	230	1
	60 км	63000/220			
5	3 AC – 70	2 ТРДН –	30/0,86	115	4
	30 км	25000/110			
6	2 AC -	2 ТРДН –	65/0,85	215	3
	240 120 км	40000/220			
7	3 AC -120	2 ТРДЦН –	60/0,9	115	2
	60 км	63000/110			
8	2 AC -	2 ТРДЦН –	120/0,88	230	1
	400 150 км	100000/220			
9	3 AC - 70	2 ТРДН –	45/0,86	110	4
	65 км	40000/110			
10	2 AC -	2 ТРДН –	65/0,85	215	3
	240 120 км	40000/220			
11	3 AC – 120	2 ТРДЦН –	60/0,9	115	2
	60 км	63000/110			
12	2 AC -	2 ТРДЦН –	120/0,88	230	1
	400 150 км	100000/220			

13	3 AC – 70	2 ТРДН –	45/0,86	110	4
	65 км	40000/110			
14	4 AC –	2 ТРДЦН –	150/0,9	225	3
	240 150 км	160000/220			
15	2 AC – 150	2 ТРДЦН –	50/0,83	113	2
	35 км	63000/110			
16	2 AC – 240	2 ТРДЦН –	100/0,91	220	1
	80 км	100000/220			
17	3 AC 120	2 ТРДН –	40/0,8	112	4
	40 км	40000/110			
18	2 AC – 300	2 ТРДЦН –	70/0,88	222	3
	60 км	63000/220			
19	3 AC – 70	2 ТРДН –	30/0,86	118	2
	30 км	25000/110			
20	2 AC -	2 ТРДН –	65/0,85	212	1
	240 120 км	40000/220			
21	3 AC – 120	2 ТРДЦН –	60/0,9	117	4
	60 км	63000/110			
22	2 AC -	2 ТРДЦН –	120/,088	220	3
	400 150 км	100000/220			
23	3 AC -70	2 ТРДН –	45/0,96	113	2
	65 км	40000/110			
24	4 AC –	2 ТРДЦН –	150/0,9	224	1
	240 150 км	160000/220			

Типовые вопросы к экзамену 3 курс:

- 1. Основные понятия и определения. Чем характеризуется установившейся режим работы ЭЭС?
- 2. Классификация электрических сетей. Номинальные напряжения электрических сетей.
- 3. Основные элементы электроэнергетических систем: генераторы, линии электропередачи, трансформаторы и автотрансформаторы, узлы комплексных нагрузок
- 4. Виды режимов работы электрической сети.
- 5. Для какой цели выпускают однофазные трансформаторы?
- 6. Какие бывают схемы и группы соединений силовых трансформаторов?
- 7. Как проводятся опыты х.х. двухобмоточного трансформатора?
- 8. Как проводятся опыты к.з. двухобмоточного трансформатора?
- 9. С помощью каких устройств регулируется коэффициент трансформации?
- 10. Показатели качества электроэнергии.
- 11. Допустимые отклонения частоты и установившегося отклонения напряжения?
- 12. Определения отклонения частоты и установившегося отклонения напряжения?
- 13. Виды режимов работы электрической сети? Определение качества электрической энергии.
- 14. Основные сведения о конструкции воздушных линий.
- 15. Конструктивные элементы воздушных линий.
- 16. Основные сведения о конструкциях кабельных электрических линий.
- 17. Какие электрические сети называются разомкнутыми? Методы расчета режимов замкнутых сетей.
- 18. Что такое натуральная мощность? Какая мощность называется предельной?
- 19. Полные и упрощенные схемы замещения электрических линий и их параметры.
- 20. Полные и упрощенные схемы замещения трансформаторов (автотрансформаторов) и их параметры.
- 21. Расчетные схемы электрических сетей.
- 22. Расчет электрических линий 110-220 кВ с использованием векторных диаграмм.
- 23. Влияние емкостных токов на режимные параметры.
- 24. Аналитическая зависимость между напряжениями начала и конца линии. Понятие потери и падения напряжения.
- 25. Расчет магистральных электрических сетей и разветвленных сетей.

- 26. Расчет разветвленных электрических сетей.
- 27. Совместный расчет сетей двух номинальных напряжений.
- 28. Расчет электрических сетей с учетом статических характеристик нагрузок.
- 29. Расчет режимов работы электрических сетей с двумя источниками питания.
- 30. Как определить кпд электрической сети?
- 31. Какие сети называются замкнутыми? Назовите виды замкнутых сетей.
- 32. В каком случае протекает уравнительный ток в сети с двухсторонним питанием?
- 33. С чем связаны коммерческие потери электроэнергии?
- 34. Как определяются потери энергии в поперечных элементах ВЛ?
- 35. Какие схемы замещения используют при расчетах электрических режимов в ВЛ?
- 36. Как определяются потери мощности и энергии в продольных элементах ВЛ?
- 37. Назначение и порядок технического анализа вариантов конфигурации электрической сети.
- 39. Выбор номинальных напряжений электрической сети при ее развитии.
- 40. Выбор конструктивных элементов ВЛ.
- 41. Выбор конструктивного исполнения КЛ.
- 42. Выбор и проверка экономически целесообразных сечений линий электропередачи.
- 43. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 44. Выбор сечений проводников по нагреву длительно-допустимым током.
- 45. Выбор сечений проводников по допустимой потере напряжения.
- 46. Балансовый расчет компенсации реактивной мощности.
- 47. Выбор компенсирующих устройств методом поперечной компенсации.
- 48. Выбор числа и мощности силовых трансформаторов.
- 49. Подготовка исходной информации для расчета режимов с помощью ПВК.
- 50. Характеристика ПВК, используемых для расчета режимов.
- 51. Проверка правильности расчетов режимов с помощью ПВК.
- 52. Нормативные требования к расчетным условиям в ЭЭС.
- 53. В чем заключается анализ режимов, и с какой целью его проводят.
- 54. Регулирование напряжения.
- 55. Как обеспечить оптимальное потокораспределение в электрической сети?
- 56. Пути повышения пропускной способности электрических сетей.
- 57. Принципы разработки вариантов развития ЭЭС и электрических сетей.

Пример задания для курсового проекта

Курсовой проект посвящен проектированию системообразующей и распределительной электрических сетей. Содержание проекта приведено в разделе варианты заданий на проектирование распределительной сети приведены в табл. 2, исходная схема расположения узлов распределительной сети показана на рис. 1

Задание на проектирование системообразующей сети выдается преподавателем индивидуально для каждого студента.

Дополнительные данные для проектирования

- 1. Район проектирования сети Урал.
- 2. Значения экономических характеристик, используемых при проектировании:
- коэффициент приведения капитальных вложений к современным ценам, k = 68,8;
- удельная стоимость потерь электроэнергии в сети, $\beta = 1,2$ руб./кВт·ч.
- 3. Состав потребителей электроэнергии по категориям надежности: потребители узла с наименьшей нагрузкой относятся к III категории по надежности, состав потребителей других узлов по надежности одинаков (I категория 30 %; II категория 30 %; III категория 40 %).
- 4. Число часов максимальной мощности нагрузок района Ттах = 4500 ч.
- 5. Для всех нагрузок $\cos \varphi = 0.9$.
- 6. Номинальные напряжения потребителей 10 кВ.
- 7. Требуемые напряжения на шинах 10 кВ подстанций выбираются проек-

тировщиком по следующим условиям: при мощности нагрузки в максимальном режиме до 15 MBт $U\tau pe6 = 10 \text{ kB}$; при мощности от 15 до 25 MBт

Uтреб = 10,2 кB; при мощности от 25 до 35 MBт Uтреб = 10,4 кB; при мощности более 35 MBт Uтреб = 10,5 кB.

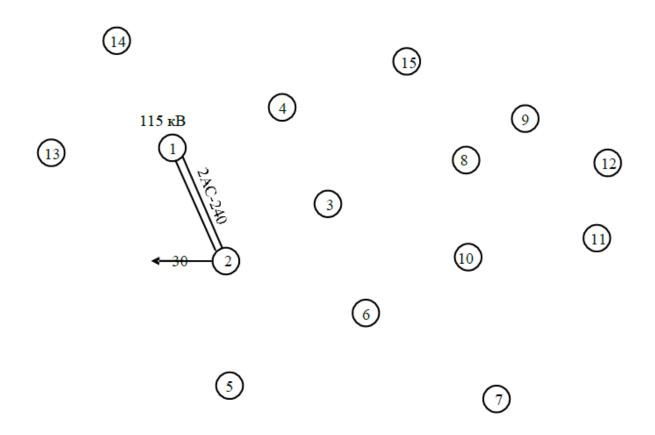


Рис.1 Исходная схема района развития сети (масштаб 1 : 1500000)

Таблица 2 Варианты задания на проектирование распределительной сети

•															
No	Мощн	Мощности нагрузок, МВт													
вар.	3	4	5	6	7	8	9	10	11	12	13	14	15		
1	15	20	20	25	_	_	_	_	_	_	_	_	_		
2	30	35	35	_	10	_		_	_	_		_			
3	20	10	45	_		10		_	_	_		_			
4	25	15	10	_		_		_	_	_	45	_			
5	20	15	10	_		_		_	_	_		40			
6	40	40	10	_	_	_	_	_	_	_	_	_	10		
7	30	35		_		_		_	_	_	10	25			
8	30	15		_		_		_	_	_		20	20		
9	40	15		_	_	_	_	_	_	_	40		10		
10	10	20	45			_	35								
11	15	15	10	_	_	_	_	40	_		_	_	_		
12	_	_	15	40	20	40	_	_	_	_	_	_	_		
13	_	_	40	30	25	_	_	10	_	_	_	_	_		
14	_	_	20	10	45	_	_		_		_		_		
15	_	_	20	30	_	35	15		_		_		_		
16	_	_	40	30	_	35	_	10	_	_		_	_		
17		_	35	25	_	30	_		20	<u></u>	_	<u> </u>	_		

				_		-							
18	_	_	30	45	_	20	_	_	_	10		_	_
19	_	_	20	20	_	40	_	_	_	_	20	_	_
20	_	_	40	45	_	_	_	_	_	_	_	_	10
21	25	_	30	20	20	_	_	_	_	_	_	_	_
22	45	_	15	45	_	10	_	_	_	_	_	_	_
23	45	_	30	30	_	_	10	_	_	_	_	_	_
24	35	_	30	40	_	_	_	15	_	_	_	_	_
25	35	_	40	20	_	_	_	_	_	_	10	_	_
26	20	_	10	30	_	_	_	_	_	_	_	_	_
27	10	_	40	15	_	_	_	_	_	_	_	_	_
28	40	30	_	20	10	_	_	_	_	_	_	_	_
29	15	15	_	30	_	45	_	_	_	_	_	_	_
30	25	10	_	30	_	_	40	_	_	_	_	_	_
31	45	25	_	40	_	_	_	15	_	_	_	_	_
32	45	35	_	35	_	_	_	_	10	_	_	_	_
33	30	40	_	15	_	_	_	_	_	25	_	_	_
34	25	15	_	30	_	_	_	_	_	_	30	_	_
35	30	10	_	35	_	_	_	_	_	30	_	20	
36	30	25		10					_			_	45

$N_{\underline{0}}$	Мош	іность і	нагрузс	к, МВ1	Γ								
вар.	3	4	5	6	7	8	9	10	11	12	13	14	15
37	_	_	_	15	_	25	40	15		_	_	_	_
38	_	_	_	25	_	30	40	_	10	_	_	_	_
39	_	_	_	15	_	40	10	_		25	_	_	_
40	_	_	_	25	_	10	30	_		_	_	35	_
41	_	_	_	30	_	25	15		_				15
42	40	30	_		_	_			_		40	10	
43	45	10	_	_	_	_	_	_	_	_	15	20	_
44	15	25	_	_	_	_	_	_	_	_	_	20	40
45	_	_	15	45	40	10	_	_	_	_	_	_	_
46	_	_	25	15	30	_	40	_	_	_	_	_	_
47	_	_	30	25	20	_	_	20		_	_	_	_
48	_	_	35	40	30	_	_	_	15	_	_	_	_
1 9	_	_	40	15	35	_	_	_	_	20	_	_	_
50	_	_	10	30	25	_	_	_		_	25	_	_
51	40	_	_	15	_	15	30	_	_	_	_	_	_
52	30	_	_	25	_	40	_	10		_	_	_	_
53	20	_	_	20	_	15	_	_	45	_	_	_	_
54	25	_	_	25	_	10	_		_	20	_	_	_
55	20	_	_	15	30	35	_	_		_	_	_	_
56	20	10	_	_	_	30	20	15		_	_	_	_
57	_	15	_	_	_	40	40	_	10	_	_	_	_
58	_	40	_	_	_	35	15		_	15	_	_	_
59	_	45	_	_	_	15	25		_	_	_	_	25
50		15				40		15	15	_			
51			30	28	12			22					
62	38			25		15		18					
63	40	32		15									12
64		38									32	28	14

65	32		26	28				14					
66	40	32				20	10						
67		28		32	12			18					
68	40					20		33	16				
69	32			36	16			22					
70	38			22		24		12					
71	42	38		18	10								
72			36	32	12			18					
73	40					22	12	24					
74	38		36	20	15								
75	26			30				18	12				
76	28					18		22		10			
77		22									40	28	10
78	22			38		16							12
79			28	36	22			12					
80	40	22				20	18						

Вопросы к защите курсового проекта

- 1. Порядок проектирования развития ЭЭС и электрических сетей.
- 2. Структура технического задания на проектирование объектов и подсистем ЭЭС.
- 3. Нормативно-техническая документация, используемая при проектировании развития электроэнергетических систем и электрических сетей.
- 4. Средства автоматизации, используемые при проектировании электрических сетей.
- 5. Назначение и составление балансов мощности и энергии при проектировании.
- 6. Определение нагрузки узлов при проектировании.
- 7. Состав исходных данных для проектирования развития ЭЭС и электрических сетей.
- 8. Назначение структурного анализа существующей электрической сети и порядок его проведения.
- 9. Привести соответствие между климатическими характеристиками района проектирования и разделами проекта, где они используются.
- 10. Перечислить технические критерии и ограничения, используемые при разработке вариантов конфигурации электрической сети.
- 11. Условия сопоставимости вариантов развития электроэнергетических систем и их объектов.
- 12. Алгоритм проектирования магистральных электрических сетей.
- 13. Алгоритм проектирования распределительных электрических сетей.
- 14. Определение потерь мощности и энергии при проектировании ЭЭС._
- 15. Критерий экономического сопоставления вариантов электрической сети, используемый при проектировании развития ЭЭС.
- 16. Учет надежности при проектировании электрических сетей.
- 17. Себестоимость транспорта электроэнергии.
- 18. Схемы электрических сетей.
- 19. Схемы электрических соединений подстанций.
- 20. Принципы разработки вариантов развития ЭЭС и электрических сетей.
- 21. Назначение и порядок технического анализа вариантов конфигурации электрической сети.
- 22. Выбор номинальных напряжений электрической сети при ее развитии.
- 23. Выбор конструктивных элементов ВЛ.
- 24. Выбор конструктивного исполнения КЛ.
- 25. Выбор и проверка экономически целесообразных сечений линий электропередачи.
- 26. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 27. Выбор сечений проводников по нагреву длительно-допустимым током.
- 28. Выбор сечений проводников по допустимой потере напряжения.
- 29. Балансовый расчет компенсации реактивной мощности.

- 30. Выбор компенсирующих устройств методом поперечной компенсации.
- 31. Выбор числа и мощности силовых трансформаторов.
- 32. Нормативные требования к расчетным условиям в ЭЭС.
- 33. В чем заключается анализ режимов, и с какой целью его проводят.
- 34. Регулирование напряжения.
- 35. Как обеспечить оптимальное потокораспределение в электрической сети?
- 36. Пути повышения пропускной способности электрических сетей.
- 37. Методы снижения потерь электроэнергии при проектировании электрических сетей.

Типовые вопросы к экзамену 4 курс:

- 1. Назначение и порядок технического анализа вариантов конфигурации электрической сети.
- 2. Выбор номинальных напряжений электрической сети при ее развитии.
- 3. Выбор конструктивных элементов ВЛ.
- 4. Выбор конструктивного исполнения КЛ.
- 5. Выбор и проверка экономически целесообразных сечений линий электропередачи.
- 6. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 7. Выбор сечений проводников по нагреву длительно-допустимым током.
- 8. Выбор сечений проводников по допустимой потере напряжения.
- 9. Балансовый расчет компенсации реактивной мощности.
- 10. Выбор компенсирующих устройств методом поперечной компенсации.
- 11. Выбор числа и мощности силовых трансформаторов.
- 12. Подготовка исходной информации для расчета режимов с помощью ПВК.
- 13. Характеристика ПВК, используемых для расчета режимов.
- 14. Проверка правильности расчетов режимов с помощью ПВК.
- 15. Нормативные требования к расчетным условиям в ЭЭС.
- 16. В чем заключается анализ режимов, и с какой целью его проводят.
- 17. Регулирование напряжения.
- 18. Как обеспечить оптимальное потокораспределение в электрической сети?
- 19. Пути повышения пропускной способности электрических сетей.
- 20. Принципы разработки вариантов развития ЭЭС и электрических сетей.
- 21. Методы снижения потерь электроэнергии при проектировании электрических сетей.
- 22. Условия сопоставимости вариантов развития электроэнергетических систем и их объектов.
- 23. Алгоритм проектирования магистральных электрических сетей.
- 24. Алгоритм проектирования распределительных электрических сетей.
- 25. Определение потерь мощности и энергии при проектировании ЭЭС.
- 26. Критерий экономического сопоставления вариантов электрической сети, используемый при проектировании развития ЭЭС.
- 27. Учет надежности при проектировании электрических сетей.
- 28. Себестоимость транспорта электроэнергии.
- 29. Схемы электрических сетей.
- 30. Схемы электрических соединений подстанций.