Документ подписан простой электронной подписью

Информация о владельце: ФИО: Косенок Сер**Теосполовое** задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 20.06.2025 06:16:54

Электродинамика: Семестр 5

Уникальный программный ключ: e3a68f3eaa1e62674b54f4998099d3d6bfdcf836.

Код, направление подготовки	03.03.02 Физика
Направленность (профиль)	Цифровые технологии в геофизике
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра экспериментальной физики
Автор	Лебедев С.Л.

Проверя емая компете нция	Задание	Варианты ответов	Уровень сложности вопроса
ОПК-1.1 ОПК-1.2	1.Какая из нижеприведенных картинок векторного поля определенно соответствует полю с отличной от нуля дивергенцией?	 A) B) Γ) Δ Δ<td>Низкий</td>	Низкий
ОПК-1.1 ОПК-1.2	2. Что покажет гальванометр, включенный в цепь контура, охватывающего соленоид с переменным током, если вначале скрутить петлю, а затем надеть ее на соленоид, как показано на рисунке?	А) ток удвоится после надевания петли; Б) ток будет равен нулю до и станет отличным от нуля после надевания петли; В) ток не изменится после надевания петли; Г) ток будет равен нулю как до, так и после надевания петли; Д) ток был отличен от нуля до и станет равным нулю после надевания петли.	Низкий
ОПК-1.1 ОПК-1.2	3. Какое из четырех уравнений Максвелла приводит к закону Гаусса в электростатике?	A) $\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{H}}{\partial t}$; B) $\vec{\nabla} \cdot \vec{E} = 4\pi \rho$; B) $\vec{\nabla} \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{j}$; $\vec{\Gamma}$) $\vec{\nabla} \cdot \vec{H} = 0$.	Низкий
ОПК-1.1 ОПК-1.2	4.Чем отличается электростатическое поле тонкой равномерно заряженной диэлектрической оболочки, имеющей форму сферы от поля такой же по размерам металлической сферы, если поверхностная плотность заряда в обоих случаях одинакова?	А) ничем; Б) только полем внутри сферы; В) полем и внутри, и снаружи; Г) только полем снаружи.	Низкий
ОПК-1.1 ОПК-1.2	5.Какое из нижеприведенных тождеств основано на теореме о свертке для тензора Леви-Чивиты ($\varepsilon_{ikl}\varepsilon_{lmn} = \delta_{im}\delta_{kn}\delta_{in}\delta_{km}$)?	A) $\vec{A} \cdot (\vec{B} \times \vec{C}) - \vec{B} \cdot (\vec{C} \times \vec{A}) = 0$; B) $\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = 0$;	Низкий

		B) $\vec{A} \times (\vec{B} \times \vec{C}) - (\vec{A} \cdot \vec{C})\vec{B} + (\vec{A} \cdot \vec{B})\vec{C} = 0$;	
		$\vec{B} \cdot (\vec{A} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} + (\vec{A} \cdot \vec{B}) \vec{C} = 0;$ $\vec{B} \cdot (\vec{A} \times \vec{C}) + \vec{C} \cdot (\vec{A} \times \vec{B}) = 0;$	
ОПК-1.1 ОПК-1.2	6.Является ли поле $\vec{F} = yz^2\vec{i} + zx^2\vec{j} + xy^2\vec{\kappa}$	а) потенциальным? б) вихревым? в) соленоидальным?	Средний
ОПК-1.1 ОПК-1.2	7.Укажите соответствия между формулами электродинамики, записанными для непрерывного и для дискретного распределения зарядов. А) $\int \frac{\rho(\vec{r}')}{ \vec{r}-\vec{r}' } d^3 \vec{r}';$ Б) $\int \rho(\vec{r},t) \vec{r} \ d^3 \vec{r};$ В) $\int_{V} [\vec{r},\vec{j}(\vec{r},t)] d^3 \vec{r};$ Г) $\rho(\vec{r},t) \vec{v}(\vec{r},t);$ Д) $\int_{V} \rho(\vec{r},t) \vec{v}(\vec{r},t) \cdot \vec{E}(\vec{r},t) \ d^3 \vec{r};$ E) $\int_{V} \rho(\vec{r},t) \vec{E}(\vec{r},t) \ d^3 \vec{r};$	1) $\sum_{n} q_{n} \vec{E}(\vec{r}_{n}(t), t)$ 2) $\sum_{n} q_{n} \vec{v}_{n}(t) \cdot \vec{E}(\vec{r}_{n}(t), t)$ 3) $\sum_{n} \frac{q_{n}}{ \vec{r} - \vec{r}_{n} };$ 4) $\sum_{n} q_{n} \vec{r}_{n}(t);$ 5) $\sum_{n} q_{n} \vec{r}_{n}(t) \times \vec{v}(t);$ 6) $\sum_{n} q_{n} \vec{v}_{n}(t) \delta^{(3)}(\vec{r} - \vec{r}_{n}(t)).$	Средний
ОПК-1.1 ОПК-1.2	8.Какие (какое) из приведённых ниже условий на интервал между двумя событиями $(\vec{x}^{(1)},ct^{(1)})$ и $(\vec{x}^{(2)},ct^{(2)})$ указывают (указывает) на то, что они могут быть причинно связанными?	A) $\Delta s^2 \equiv (\Delta \vec{x})^2 - c^2 \Delta t^2 > 0$; B) $\Delta s^2 < 0$; B) $\Delta s^2 = 0$.	Средний
ОПК-1.1 ОПК-1.2	9.При каких условиях на параметры α и β функции вида $\phi(\vec{x},t) = r^{\alpha} \cos(\beta \mathcal{G})$, $\psi(\vec{x},t) = r^{\alpha} \sin(\beta \mathcal{G})$ являются решениями уравнения Лапласа в области $r > 0$? Здесь r , \mathcal{G} - радиальная и полярная сферические координаты.	B) $\alpha = -\beta - 1 \neq 0$; Γ) $\alpha = -1, \beta = 0$; Λ) $\alpha(\alpha + 1) = \beta(\beta - 1) \neq 0$;	Высокий
ОПК-1.1 ОПК-1.2	необходимо совершить для перемешения точечного заряла а	A) $A = \infty$; B) $A = \frac{qQ}{R}$; B) $A = \frac{1}{2} \frac{qQ}{R}$; Γ) $A = \frac{3}{2} \frac{qQ}{R}$; Π) $A = -\frac{1}{2} \frac{qQ}{R}$.	Средний

ОПК3	11.Вычислить циркуляцию	A) $\pi \vec{\omega} \cdot \vec{n}_a (a^2 - b^2)$;	Средний
		$\vec{\mathbf{b}}) \ \pi \vec{\omega} \cdot \vec{n}_a (-a^2 + b^2);$	
	постоянный вектор) вдоль		
	контура, представляющего собой	B) $\pi \vec{\omega} \cdot (\vec{n}_a a^2 - \vec{n}_b b^2)$;	
	«восьмерку» из двух окружностей радиусами a и b , $a < b$. Векторы	$\Gamma) \pi\vec{\omega} \cdot (\vec{n}_a a^2 + \vec{n}_b b^2);$	
	единичных нормалей к плоскостям окружностей равны	Д) $\pi \vec{\omega} \cdot \vec{n}_b (-a^2 + b^2)$.	
	\vec{n}_a и \vec{n}_b соответственно. Указать		
	правильные ответы.		
	()		
		Укажите все правильные ответы:	Средний
ОПК-1.2	интеграл $ec{J}_1 = \coprod_{eta V} ec{r} \; (ec{A} \cdot ec{n}) dS ,$	А) 0; Б) $\vec{A}V$;	
	если объем, охватываемый	B) $2\vec{A}V$;	
	вамкнутой поверхностью ∂V , равен V , \vec{n} - нормаль к	Γ) $\frac{1}{3}\vec{A}V$;	
	поверхности ∂V , а вектор \vec{A}	$ \square, \frac{1}{3}\vec{A} \oiint_{\partial V} \vec{r} \cdot \vec{n} dS; $	
ОПК-1.1	постоянный. 13.Вычислить интеграл	A) 0:	Средний
ОПК-1.2	$\vec{J}_2 = \iint \vec{n} \times (\vec{A} \times \vec{r}) dS$, если	Б) \vec{AV} ;	1 "
	объем, охватываемый замкнутой	(B) 2AV;	
	поверхностью $\mathcal{O}V$, равен V , n - нормаль к поверхности ∂V , а вектор \overrightarrow{A} -постоянный.	$\mathcal{A}_{3}^{\mathcal{A}}\mathcal{B}_{\partial V}^{\mathcal{A}}$ $\mathcal{A}_{3}^{\mathcal{A}}\mathcal{B}_{\partial V}^{\mathcal{A}}$	
ОПК-1.1	14.Найти энергию	$A) - \frac{Q^2}{a};$	Средний
ОПК-1.2	взаимодействия точечного заряда Q с плоской проводящей	$\begin{pmatrix} a \end{pmatrix}$	
	поверхностью, если заряд	$\begin{pmatrix} a \\ B \end{pmatrix} = \frac{Q^2}{2}$.	
	находится на расстоянии а от	B) $-\frac{Q^2}{2a}$; Γ) $-\frac{Q^2}{4a}$;	
	плоскости.	$ \mathcal{I} $ $\frac{4a'}{2a'}$ $ \mathcal{I} $ $\frac{Q^2}{8a}$	
		ou 	
ОПК-1.1 ОПК-1.2	15.В некоторой области пустого пространства электромагнитная	A) $\vec{H}(\vec{r},t) = -\frac{c}{\omega}\vec{k} \times \vec{E}_0 \cos(\vec{k}\vec{r} - \omega t);$	Средний
1.2	волна описывается вектором	$\vec{B} \cdot \vec{H}(\vec{r}, t) = \frac{c}{\omega} \vec{k} \times \vec{E}_0 \sin(\vec{k}\vec{r} - \omega t);$	
	$\vec{E}(\vec{r},t)$ электрической напряжённости следующего вида:	w	
	$ec{E}(ec{r},t) = ec{E}_0 cos(ec{k}ec{r} - \omega t)$. Тогда	$\mathbf{B}) \vec{H}(\vec{r},t) = \frac{c}{\omega} \vec{k} \times \vec{E}_0 \cos(\vec{k}\vec{r} - \omega t);$	
	зависимость от координат и времени вектора магнитной	$\Gamma) \vec{H}(\vec{r},t) = \frac{c}{\omega} \vec{k} \times \vec{E}_0 \sin(\vec{k}\vec{r} - \omega t).$	
	напряжённости в этой области имеет вид:	w	
	писст вид.	Д) $\vec{H}(\vec{r},t) = \vec{E}_0 \times \frac{c}{\omega} \vec{k} \sin(\omega t - \vec{k} \vec{r}).$	
ОПК-1.1	16.В некоторой области пустого	Указать все правильные ответы. A) $\vec{S} = \frac{c^2}{4\pi\omega} \vec{k} \vec{H}_0^2$;	Средний
ОПК-1.2	пространства электромагнитная	$4\pi\omega^{\kappa II_0}$,	
<u> </u>	волна описывается вектором		

	l →	2	
	$\vec{H}(\vec{r},t)$ магнитной напряжённости	$ \vec{S} = \frac{c^2}{4\pi c} \vec{H}_0 \times (\vec{k} \times \vec{H}_0);$	
	следующего вида: $H(\vec{r},t) =$		
	$\vec{H}_0 cos(\vec{k}\vec{r} - \omega t)$. Тогда среднее	$ \mathbf{R} \vec{\varsigma} - \frac{c^2}{kH} \vec{k} \vec{H}^2$.	
	за период значение плотности	$B/S = \frac{1}{8\pi\omega} \kappa \Pi_0 ,$	
	потока энергии \vec{S} в этой области		
	равно	$\Gamma)\vec{S}=0.$	
		N.	
ОПК-1.1	17 Порожимо отмол инотмости	Указать все правильные ответы.	Высокий
ОПК-1.1	17.Поверхностная плотность заряда однородно заряженного	A) $\phi(P) = 2\pi\sigma(\sqrt{z^2 + a^2} - z);$	Высокии
OHK-1.2	плоского диска равна σ . Радиус		
	диска равен а. Точка Р с	$\mathbf{b}) \phi(P) = 2\pi\sigma(\sqrt{z^2 + a^2} + z);$	
	координатой <i>z</i> находится на оси		
	OZ, перпендикулярной плоскости	B) $\phi(P) = 2\pi\sigma(\sqrt{z^2 + a^2} - z);$	
	диска и проходящей через его		
	центр. Найти потенциал $\phi(z)$ в	$\Gamma(\Gamma) \phi(P) = 2\pi\sigma \left(\sqrt{z^2 + a^2} + z \right).$	
	этой точке.		
ОПК-1.1	18.Определить ёмкость		Высокий
ОПК-1.2	сферического конденсатора,	A) $C = \frac{\varepsilon_1 \varepsilon_2}{\frac{\varepsilon_2}{h} - \frac{\varepsilon_1}{a} - \frac{\varepsilon_1 - \varepsilon_2}{o}};$	
	радиусы обкладок которого	$\frac{2}{b} - \frac{1}{a} - \frac{2}{\rho}$	
	равны a и b ($a < b$), если пространство между обкладками		
	заполнено однородными	$E(S) C = \frac{\varepsilon_1 \varepsilon_2}{\frac{\varepsilon_2}{a} - \frac{\varepsilon_1}{b} + \frac{\varepsilon_2 - \varepsilon_1}{a}};$	
	диэлектриками в виде двух	$\frac{a}{a} - \frac{1}{b} + \frac{a}{\rho}$	
	концентрических сферических	6.6	
	слоёв. Диэлектрические	B) $C = \frac{\varepsilon_1 \varepsilon_2}{\frac{\varepsilon_2}{a} + \frac{\varepsilon_1}{b} + \frac{\varepsilon_1 - \varepsilon_2}{a}};$	
	постоянные диэлектриков равны	$\frac{a}{a} + \frac{b}{b} + \frac{a}{\rho}$	
	ε_1 и ε_2 , а	C. C.	
	граница	$\Gamma C = \frac{\varepsilon_1 \varepsilon_2}{\frac{\varepsilon_2}{a} - \frac{\varepsilon_1}{b} + \frac{\varepsilon_1 - \varepsilon_2}{a}}.$	
	раздела ρ ε_2	$\frac{a}{a} - \frac{b}{b} + \frac{a}{\rho}$	
	имеет а		
	радиус ρ , $a < \rho <$ ϵ_1		
	b. (21)		
	h h		
ОПК-1.1	19.Пусть задан 4-тензор $T_{\alpha\beta\gamma}$,	A) $T_{\alpha\beta\gamma}A_{\gamma}=0;$	Высокий
ОПК-1.2	антисимметричный по первой		
	паре индексов и симметричный	$ (B) T_{\alpha\beta\gamma}T_{\beta\gamma\sigma}A_{\sigma}B_{\alpha} = 0; $	
	по второй паре индексов: $T_{\alpha\beta\gamma} =$		
	$-T_{\beta\alpha\gamma}$, $T_{\alpha\beta\gamma}=T_{\alpha\gamma\beta}$. Какое из	$B) T_{\alpha\beta\rho} T_{\rho\gamma\sigma} A_{\beta} B_{\alpha} A_{\gamma} B_{\sigma} = 0 ;$	
	приводимых в пунктах А) – Г)		
	соотношений с участием этого	$T_{\alpha\beta\gamma} = 0$.	
	тензора выполняется без		
	дополнительных предположений (накладываемых или на этот		
	тензор или на 4-векторы A_{μ}, B_{μ} ?		
	Указать все правильные ответы.		
ОПК-1.1	20.Массивный атом движется в	A) $u_{\mu}u_{\mu}$;	Высокий
ОПК-1.2	лабораторной системе со		
	скоростью \vec{v} . Атом излучает	$β$) $ħk_μħk_μ$;	
	фотон с волновым вектором \vec{k} и		
	частотой ω. Если обозначить 4-	B) $\hbar k_{\mu}u_{\mu}$;	
	скорость атома как $u_{\mu} = (\vec{v}\gamma, ic\gamma),$		
	а 4-импульсы фотона и самого	$\Gamma) (p_{\mu} + \hbar k_{\mu})^2.$	
	атома как $\hbar k_{\mu} =$		
	$\hbar\left(\vec{k},irac{\omega}{c} ight)$ и $p_{\mu}=Mu_{\mu}$, то для	Указать все правильные ответы.	
	получения формулы поперечного		
	эффекта Доплера $\omega_0 = \omega \gamma$, где		

γ — Лоренц-фактор, а ω_0 —
собственная частота излучения
атома – необходимо
воспользоваться Лоренц-
инвариантностью величины: