Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

ФОРМА ОЦЕНОЧНОГО МАТЕРИАЛА Дата подписания: 17.06.2025 08:07:24 ДЛЯ ПРОМЕЖУТОЧНОЙ ATTECTAЦИИ

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «ФИЗИКА»

Код, направление подготовки	08.03.01
Направленность (профиль)	Промышленное и гражданское строительство
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра Строительных технологий и конструкций

Типовые задания для контрольной работы

Перед проведением экзаменов в 1 и 2 семестрах проводится контрольная работа с целью контроля усвоения студентами знаний лекционного курса, оценки знаний и навыков, приобретенных в ходе практических занятий, развивающих профессиональные способности в соответствии с требованиями квалификационной характеристики специалиста. Контрольная работа проводится в виде заданий по курсу общей физики, по расписанию в часы учебных занятий в объеме, предусмотренном рабочей программой по дисциплине и учебной нагрузкой преподавателя.

Типовые варианты заданий для контрольной работы:

Раздел «Электричество и магнетизм» (1 семестр)

1 вариант

- 1. Расстояние между двумя точечными зарядами $Q_1 = 1$ мкКл и $Q_2 = -Q_1$ равно 10 см. Определить силу F, действующую на точечный заряд Q = 0,1 мкКл, удаленный на расстоянии $r_1 = 6$ см от первого и на $r_2 = 8$ см от второго зарядов.
- 2. Электроемкость C плоского конденсатора равна 1,5 мк Φ . Расстояние d между пластинами 5 мм. Какова будет электроемкость C конденсатора, если на нижнюю пластину положить лист эбонита толщиной $d_1 = 3$ мм?
- 3. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кA. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.

2 вариант

- 1. Электрическое поле создано двумя точечными зарядами $Q_1 = 40$ нКл и $Q_2 = -10$ нКл, находящимися на расстоянии d = 10 см друг от друга. Определить напряженность Е поля в точке, удаленной от первого заряда на $r_1 = 12$ см и от второго на $r_2 = 6$ см.
- 2. ЭДС батареи аккумуляторов 12 В, сила тока I короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей?

3. По двум бесконечно длинным параллельным проводам текут токи $I_1 = 20$ А и $I_2 = 30$ А в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r = 10 см.

3 вариант

- 1. Бесконечная тонкая прямая нить несет равномерно распределенный по длине нити заряд с плотностью $\tau = 1$ нКл/м. Каков градиент потенциала в точке, удаленной на расстояние r = 10 см от нити? Указать направление градиента потенциала.
- 2. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС E каждого элемента равна 1,2 B, внутреннее сопротивление r = 0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R = 1,5 Ом. Найти силу тока I во внешней цепи.
- 3. Прямой провод длиной l=40 см движется в однородном магнитном поле со скоростью v=5 м/с перпендикулярно линиям индукции. Разность потенциалов U между концами провода равна 0,6 В. Вычислить индукцию B магнитного поля.

4 вариант

- 1. Тонкая нить длиной l=20 см равномерно заряжена с линейной плотностью τ =10 нКл/м. На расстоянии a=10 см от нити, против ее середины, находится точечный заряд Q=1 нКл. Вычислить силу F, действующую на этот заряд со стороны заряженной нити.
- 2. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС ϵ каждого элемента равна 1,2 В, внутреннее сопротивление r=0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R=1,5 Ом. Найти силу тока I во внешней цепи.
- 3. Электрон движется в однородном магнитном поле с индукцией B=9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h=7,8 см. Определить период T обращения электрона и его скорость v.

Типовые варианты заданий для контрольной работы:

Раздел «Молекулярная физика и термодинамика» (2 семестр)

1 вариант

- 1. В баллоне вместимостью V=25 л находится водород при температуре T=290 К. После того как часть водорода израсходовали, давление в баллоне понизилось на $\Delta p=0,4$ МПа. Определить массу m израсходованного водорода.
- 2. Смесь гелия и аргона находится при температуре T = 1,2 кК. Определить среднюю квадратичную скорость v_{kR} атомов гелия и аргона.
- 3. Моль кислорода, занимавший объем $V_1=1$ л при температуре T=173 K, расширился изотермически до объема $V_2=9{,}712$ л. Найти: а) приращение внутренней энергии газа $\Delta U;$ б) работу A, совершенную газом; в) количество тепла Q, полученное газом. Газ рассматривать как реальный.

2 вариант

1. В колбе вместимостью V = 100 см³ содержится некоторый газ при температуре T = 300 К. На сколько понизится давление р газа в колбе, если вследствие утечки из колбы выйдет $N = 10^{20}$ молекул?

- 2. Найти среднюю длину свободного пробега l молекул азота при условии, что его динамическая вязкость $\eta = 17$ мкПа·с.
- 3. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты $Q_1 = 4$ кДж. Определить работу A газа при протекании цикла, если его термический к.п.д. $\eta = 0,1$.

3 вариант

- 1. Пылинки, взвешенные в воздухе, имеют массу $m=10^{-18}$ г. Во сколько раз уменьшится концентрация n при увеличении высоты на $\Delta h=10$ м? Температура воздуха T=300 К.
- 2. Определить среднюю арифметическую скорость v молекул газа, если их средняя квадратичная скорость $v_{kB} = 1$ км/с.
- 3. При изотермическом расширении водорода массой m = 1 г, имевшего температуру T = 280 K, объем газа увеличился в три раза. Определить работу расширения газа.

4 вариант

- 1. Сколько молекул газа содержится в баллоне вместимостью V=30 л при температуре T=300 К и давлении p=5 МПа?
- 2. Средняя длина свободного пробега l молекулы углекислого газа при нормальных условиях равна 40 нм. Определить среднюю арифметическую скорость v молекул.
- 3. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу A расширения газа и полученное газом количество теплоты Q.

Типовые вопросы к экзамену

Проведение промежуточной аттестации в 1 и 2 семестре происходит в виде экзамена. Экзамен представляет собой ответы на теоретические вопросы и решение задач по курсу Общей физики, проводится по расписанию в объеме, предусмотренном рабочей программой по дисциплине и учебной нагрузкой преподавателя.

Типовые вопросы к экзамену (1 семестр)

Задание для показателя оценивания дескрипторов «Знает»	Вид задания
Вариант 1	теоретический
1. Электрические заряды. Взаимодействие электрических	_
зарядов. Закон Кулона. Принцип суперпозиции для сил.	
2. Индукция магнитного поля. Определение магнитной	
индукции постоянного магнитного поля с помощью рамки с	
током.	
Вариант 2	
1. Электрическое поле. Напряженность электрического поля.	
Принцип суперпозиции полей.	
2. Индукция магнитного поля. Сила Ампера.	
Вариант 3	
1. Циркуляция вектора напряженности. Потенциальный	
характер электростатического поля.	
Магнитное поле в вакууме. Силовые линии магнитного поля	
Вариант 4	

- 1. Графическое изображение полей. Линии напряженности электрических полей. Работа сил поля.
- 2. Электромагнитные волны.

Вариант 5

- 1. Потенциальная энергия в электростатическом поле Потенциал. Разность потенциалов.
- 2. Электромагнитные волны.

Вариант 6

- Эквипотенциальные поверхности. Связь напряженности и потенциала.
- 2. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.

Вариант 7

- 1. Поток вектора напряженности. Электростатическая теорема Гаусса.
- 2. Индукция магнитного поля. Сила Ампера.

Вариант 8

- 1. Проводник во внешнем электрическом поле. Теоремы Фарадея.
- 2. Методы регистрации элементарных частиц. Камера Вильсона.

Вариант 9

- 1. Диэлектрики. Поляризация диэлектриков.
- 2. Действие магнитного поля на движущийся заряд. Эффект Xолла.

Вариант 10

- 1. Теорема Гаусса для поля в диэлектрике.
- 2. Поток магнитной индукции. Правило Ленца.

Вариант 11

- 1. Сегнетоэлектрики. Их свойства.
- 2. Закон электромагнитной индукции Фарадея. Правило Ленца.

Вариант 12

- 1. Электроемкость. Конденсаторы. Последовательное соединение конденсаторов.
- 2. Взаимная индукция. Трансформатор.

Вариант 13

- 1. Электроемкость. Конденсаторы. Параллельное соединение конденсаторов.
- 2. Правила Кирхгофа. Параллельное соединение сопротивлений.

Вариант 14

- 1. Энергия и плотность энергии электрического поля.
- 2. Циркуляция вектора магнитной индукции. Закон полного тока

Вариант15

- 1. Постоянный электрический ток. Сила тока, вектор плотности тока. Уравнение непрерывности. Условие стационарности тока.
- 2. Работа и мощность в цепи электрического тока. Закон Джоуля-Ленца.

Вариант 16

1. Закон Ома для участка цепи. Электрическое

сопротивление. Закон Ома в дифференциальной форме.

2. Правила Кирхгофа. Последовательное соединение сопротивлений.

Вариант 17

- 1. Сторонние силы. Электродвижущая сила источника. Напряжение. Обобщенный закон Ома.
- 2. Сторонние силы. Электродвижущая сила источника. Закон Ома для замкнутой цепи. Ток короткого замыкания. Режим холостого хода источника.

Вариант18

- 1. Сторонние силы. Электродвижущая сила источника. Закон Ома для однородного и неоднородного участков цепи.
- 2. Закон Био-Савара-Лапласа. Магнитное Магнитное поле прямолинейного проводника

Вариант 19

- 1. Сторонние силы. Электродвижущая сила источника. Закон Ома для замкнутой цепи. Ток короткого замыкания. Режим холостого хода источника.
- 2. Закон Ома для замкнутой цепи.

Вариант 20

- 1. Правила Кирхгофа. Последовательное соединение сопротивлений.
- 2. Работа силы Ампера.

Задание для показателя оценивания дескрипторов «Умеет»,	Вид задания
«Владеет»	
Вариант 1	теоретический
Задача. Расстояние между двумя точечными зарядами $Q_1 = 1$	
мкКл и $Q_2 = -Q_1$ равно 10 см. Определить силу F, действующую	
на точечный заряд $Q = 0,1$ мкКл, удаленный на расстоянии $r_1 = 6$	

Вариант 2

Задача. Бесконечная тонкая прямая нить несет равномерно распределенный по длине нити заряд с плотностью $\tau = 1$ нКл/м. Каков градиент потенциала в точке, удаленной на расстояние r = 10 см от нити? Указать направление градиента потенциала.

см от первого и на $r_2 = 8$ см от второго зарядов.

Вариант 3

Задача. Электрическое поле создано двумя точечными зарядами $Q_1 = 40$ нКл и $Q_2 = 10$ нКл, находящимися на расстоянии d = 10 см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на $r_1 = 12$ см и от второго на $r_2 = 6$ см. **Вариант 4**

Задача. Электроемкость C плоского конденсатора равна 1,5 мкФ. Расстояние d между пластинами 5 мм. Какова будет электроемкость C конденсатора, если на нижнюю пластину положить лист эбонита толщиной $d_1 = 3$ мм?

Вариант 5

Задача. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС E каждого элемента равна 1,2 В, внутреннее сопротивление r=0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R=1,5 Ом. Найти силу тока I во внешней цепи.

Вариант 6

Задача. По двум бесконечно длинным параллельным проводам текут токи $I_1 = 20$ А и $I_2 = 30$ А в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r = 10 см.

Вариант 7

Задача. ЭДС батареи аккумуляторов 12 В, сила тока I короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей?

Вариант 8

Задача. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кA. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.

Вариант 9

Задача. Электрон движется в однородном магнитном поле с индукцией B = 9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h = 7.8 см. Определить период T обращения электрона и его скорость v.

Вариант 10

Задача. Прямой провод длиной l = 40 см движется в однородном магнитном поле со скоростью v = 5 м/с перпендикулярно линиям индукции. Разность потенциалов U между концами провода равна 0.6 В. Вычислить индукцию B магнитного поля.

Вариант 11

Задача. Два конденсатора с воздушным зазором, емкостью C=100 п Φ каждый, соединены последовательно и подключены к источнику, э.д.с. которого E=10 В. Чему равно изменение заряда конденсаторов, если один из них погрузить в жидкий диэлектрик с диэлектрической проницаемостью ϵ =2?

Вариант 12

Задача. В плоский конденсатор длиной l=5 см влетает электрон под углом $\alpha=15^{\circ}$ к пластинам. Энергия электрона W=1500 эВ. Расстояние между пластинами d=1 см. Определить величину напряжения на конденсаторе U, при котором электрон при выходе из пластин будет двигаться параллельно им.

Вариант 13

Задача. Сила тока в проводнике изменяется со временем по закону $I=I_0e^{-\alpha t}$, где $I_0=20$ A, $\alpha=10^2$ c⁻¹. Определить количество теплоты, выделившееся в проводнике за время $t=10^{-2}$ c, если сопротивление проводника R=5 Ом.

Вариант 14

Задача. Определить емкость конденсатора колебательного

контура, если известно, что при индуктивности L=50 мк Γ н контур настроен в резонанс на электромагнитные колебания с длиной волны λ =300 м.

Вариант 15

Задача. Источник тока замкнули на катушку сопротивлением $R=10~{\rm Om}$ и индуктивностью $L=0,2~{\rm \Gamma h}$. Через какое время сила тока в цепи достигнет 50 % от максимального значения?

Типовые вопросы к экзамену (2 семестр)

Задание для показателя оценивания дескриптора «Знает»	Вид задания
Вариант 1	теоретический
1. Молекулярно-кинетическая теория идеальных газов.	1
2. Энтропия. Приведенное количество теплоты. Неравенство	
Клаузиуса.	
Вариант 2	
1. Термодинамический и статистический методы.	
2. Изменение энтропии в изопроцессах с идеальным газом.	
1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
Вариант 3	теоретический
1. Тепловое движение. Уравнение состояния идеального газа.	_
2. Термодинамическая вероятность состояния системы.	
Принцип возрастания энтропии.	
Вариант 4	
1. Основное уравнение молекулярно-кинетической теории	
идеальных газов.	
2. Статистический смысл второго начала термодинамики.	
Третье начало термодинамики.	
Вариант 5	
1. Внутренняя энергия идеального газа. Число степеней свободы.	
2.Изотермы Ван-дер-Ваальса Критические параметры.	
Вариант 6	
1. Теорема о равнораспределении энергии по степеням	
свободы.	
2. Реальный газ. Межмолекулярные взаимодействия. Уравнение Ван-дер-Ваальса.	
Вариант 7	
1. Закон распределения по скоростям и по компонентам скоростей	
Максвелла. Скорости теплового движения (средняя	
арифметическая, средняя квадратичная, наиболее вероятная).	
2. Фаза. Фазовые переходы I и II рода.	
Вариант 8	
1. Барометрическая формула. Распределение Больцмана.	
2. Жидкое состояние, его характеристика. Поверхностное	
натяжение. Формула Лапласа.	
Вариант 9	

- 1. Основы термодинамики. Термодинамический и статистический методы.
- 2. Смачивание. Капиллярные явления.

Вариант 10

- 1. Макроскопические параметры. Интенсивные и экстенсивные параметры.
- 2. Кристаллическое состояние, его характеристики. Типы кристаллических решеток.

Вариант 11

- 1. Уравнение состояния. Уравнение состояния идеального газа.
- 2. Явления переноса в неравновесных системах. Столкновения молекул.

Вариант 12

- 1. Первое начало термодинамики. Работа газа при изменении его объема.
- 2. Средняя длина свободного пробега. Эффективный диаметр молекул.

Вариант 13

- 1. Теплоемкость газа. Молярные теплоемкости. Уравнение Майера
- 2. Диффузия, внутреннее трение, теплопроводность.

Вариант14

- 1. Теплоемкость газа. Молярные теплоемкости. Уравнение Майера
- 2. Адиабатный процесс. Уравнение Пуассона. Работа при адиабатическом процессе.

Вариант 15

- 1. Адиабатный процесс. Уравнение Пуассона. Работа при адиабатическом процессе.
- 2. Внутренняя энергия идеального газа. Число степеней свободы.

Вариант 16

- 1. Круговой процесс (цикл). КПД цикла. Обратимые и необратимые процессы.
- 2. Применение первого начала термодинамики к изопроцессам.

Вариант17

- 1. Второе начало термодинамики по Кельвину и Клаузиусу.
- 2. Основное уравнение молекулярно-кинетической теории идеальных газов.

Вариант 18

- 1. Цикл Карно. Максимальный КПД тепловой машины.
- 2. Теплоемкость газа. Молярные теплоемкости. Уравнение Майера

Вариант 19

1. Термодинамическая система, термодинамическое равновесие, изолированная система. Параметры термодинамического состояния вещества: m, v, µ, p, V, T.

2. Теорема Нернста (III начало термодинамики). Недостижимость абсолютного нуля.

Вариант 20

- 1. Поверхностное натяжение. Свободная энергия поверхностного слоя.
- 2. Работа, совершаемая идеальным газом при адиабатном процессе

 $\Delta p = 0.4 \text{ M}\Pi a$. Определить массу *m* израсходованного

Задание для показателя оценивания дескрипторов «Умеет»,	Вид задания
«Владеет»	
Вариант 1	практический
Задача. В баллоне вместимостью $V = 25$ л находится водород	
при температуре $T = 290$ К. После того как часть водорода	
израсходовали, давление в баллоне понизилось на	

водорода. Вариант 2

Задача. В колбе вместимостью $V = 100 \text{ см}^3$ содержится некоторый газ при температуре T = 300 K. На сколько понизится давление p газа в колбе, если вследствие утечки из колбы выйдет $N = 10^{20} \text{ молекул}$?

Вариант 3

Задача. Смесь гелия и аргона находится при температуре T = 1,2 кК. Определить среднюю квадратичную скорость $\langle \upsilon_{\text{кв}} \rangle$ атомов гелия и аргона.

Вариант 4

Задача. Пылинки, взвешенные в воздухе, имеют массу $m = 10^{-18}$ г. Во сколько раз уменьшится концентрация n при увеличении высоты на $\Delta h = 10$ м? Температура воздуха T = 300 К.

Вариант 5

Задача. Найти среднюю длину свободного пробега l молекул азота при условии, что его динамическая вязкость $\eta = 17$ мкПа·с.

Вариант 6

Задача. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу расширения газа.

Вариант 7

Задача. Кислород, занимавший объем $V_1 = 1$ л под давлением $p_1 = 1,2$ МПа, адиабатно расширился до объема $V_2 = 10$ л. Определить работу A расширения газа.

Вариант 8

Задача. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 K, объем газа увеличился в три раза. Определить работу A расширения газа и полученное газом количество теплоты Q.

Вариант 9

Задача. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты $Q_1 = 4$ кДж. Определить работу

A газа при протекании цикла, если его термический к.п.д. $\eta=0,1.$

Вариант 10

Задача. Масса m=10 г кислорода нагревается от температуры $T_1=323$ К до температуры $T_2=423$ К. Найти изменение энтропии ΔS , если нагревание происходит: а) изохорически; б) изобарически.

Вариант 11

Задача. В закрытом сосуде объемом $V = 0.5 \text{ м}^3$ находится v = 0.6 кмоль углекислого газа при давлении p = 3 МПа. Пользуясь уравнением Ван–дер–Ваальса, найти, во сколько раз надо увеличить температуру газа, чтобы давление увеличилось вдвое.

Вариант 12

Задача. Моль кислорода, занимавший объем $V_1 = 1$ л при температуре T = 173 K, расширился изотермически до объема $V_2 = 9{,}712$ л. Найти: а) приращение внутренней энергии газа ΔU ; б) работу A, совершенную газом; в) количество тепла Q, полученное газом. Газ рассматривать как реальный.

Вариант 13

Задача. Из баллона со сжатым кислородом объемом 100 л из-за неисправности крана вытекает газ. При температуре 273 К манометр на баллоне показывал давление $2 \cdot 10^6$ Па. Через некоторое время при температуре 300 К манометр показал то же давление. Сколько газа вытекло из баллона?

Вариант 15

Задача. Баллон содержит 0,3 кг гелия. Абсолютная температура в баллоне уменьшилась на 10%, масса газа тоже уменьшилась. В результате давление упало на 20%. Сколько молекул гелия ушло из баллона?

Вариант 16

Задача. В закрытом сосуде объемом 33,6 дм³ находятся азот и один моль водяного пара. Температура 100° С, давление $2 \cdot 10^{5}$ Па. Определите массу азота в сосуде.

Вариант 17

Задача. Двухатомному газу сообщено количество теплоты Q=2,093 кДж. Газ расширяется при постоянном давлении. Найти работу A расширения газа.

Вариант 18

Задача. Азот находится в закрытом сосуде объемом V = 3 л при температуре $T_1 = 300~\rm K$ и давлении $p_1 = 300~\rm k\Pi a$. После нагревания давление в сосуде стало $p_2 = 2,5~\rm M\Pi a$. Определить температуру T_2 азота после нагревания и теплоту Q, сообщенную азоту.

Вариант 18

Задача. Два грамма гелия, расширяясь адиабатически, совершили работу ΔA =300 Дж. Определить изменение внутренней энергии и температуры гелия.

Вариант 19

Задача. Газообразный хлор массой 7,1 г находится в сосуде вместимостью 0,1 л. Какое количество теплоты необходимо подвести к хлору, чтобы при расширении его в пустоту до

объема 1 л температура газа осталась неизменной?

Вариант 20

Задача. Смесь газов состоит из аргона и азота, взятых при одинаковых условиях и в одинаковых объемах. Определить показатель адиабаты такой смеси.