Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михтиестивое задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 20.06.2024 08:50:52

Химическая технология, семестр 7 Уникальный п<u>рограммный ключ:</u>

e3a68f3eaa1e62674 <u>b54f4998099d3d6bfdcf836</u>	
Код, направление подготовки	04.03.01, ХИМИЯ
Направленность (профиль)	кимих
Форма обучения	очная
Кафедра- разработчик	химии
Выпускающая кафедра	химии

№ п/ п	Провер яемая компет енция	Задание	Варианты ответов	Тип сложност и вопроса	Кол -во бал лов за пра вил ьны й отве
1	ОПК- 1.2 ОПК- 1.3 ОПК- 1.1	Если степень превращения реагента A в химикотехнологическом процессе с химической реакцией: $aA + eB \rightarrow rR + sS$, равна x_A , то расходный коэффициент K_A [кг A/т R]) (M_A , M_B , M_R , M_S — молярные массы компонентов) равен:	a) $K_{A} = \frac{aM_{A}}{(rM_{R} \cdot 10^{3})};$ $\Gamma)_{K_{A}} = \frac{(M_{A} \cdot 10^{3} \cdot x_{A})}{rM_{R}} \mathcal{I})$ B) $K_{A} = \frac{(rM_{R} \cdot 10^{3})}{(aM_{A} \cdot x_{A})}$	Низкий	2
2	ОПК- 1.2 ОПК- 1.3 ОПК- 1.1	Степень превращения <i>х</i> исходного реагента в общем виде определяется по уравнению	a) $x = \frac{c_0 - c}{c_0}$; 6) $x = \frac{c}{c_0}$; B) $x = \frac{N_0 - N}{N_0}$; г) $x = \frac{N}{N_0}$; д) $x = \frac{c_0 - c}{c}$.	Низкий	2
3	ОПК- 1.2	Селективность процесса есть отношение:	Перечислить указанные	Низкий	2

	OHIC				
	ОПК-	а) количества целевого			
	1.3	продукта к количеству			
	ОПК-	побочных продуктов;			
	1.1	б) количества целевого			
		продукта к количеству всего			
		превращенного исходного			
		вещества;			
		в) количества исходного			
		вещества, превратившегося в			
		целевой продукт, к количеству			
		всего превращенного исходного			
		вещества;			
		г) количества целевого			
		продукта к количеству всех			
		продуктов (целевого и			
		побочных);			
	OTT	п	П	TT 0	
4	ОПК-	Для расчета сложной реакции	Перечислить	Низкий	2
	1.2	необходимо учитывать:	верные		
	ОПК-	а) все протекающие реакции;	утверждения		
	1.3	б) только линейно независимые			
	ОПК-	реакции;			
	1.1	в) только целевую реакцию;			
		г) целевую и одну			
		принципиальную			
		конкурирующую реакции;			
		д) любые стехиометрически			
		независимые уравнения.			
5	ОПК-	Что определяет величину	Перечислить	Низкий	2
	1.2	константы равновесия?	верные		
	ОПК-	1)отношение константы	утверждения		
	1.3	скорости реакции в прямом	Jisepingeinin		
	ОПК-	направлении к константе			
	1.1	скорости в обратном			
	1.1	направлении;			
		2)логарифм отношения			
		1 - 1			
		произведения парциальных давлений продуктов реакции к			
		1			
		произведению парциальных			
		давлений исходных реагентов;			
		3)отношение константы			
		скорости обратной реакции к			
		константе скорости прямой			
		реакции;			
		4)отношение произведения			
		концентраций продуктов			
		реакции к произведению			
		концентраций исходных			
		реагентов со			
		стехиометрическими			
		коэффициентами в показателях			
		Responditentalin B nekasarenni			
		степеней концентраций.			

6	1.2 функционального элемента с его обозначением (номером) в городительного обозначени		а).выделение основного продукта; b).санитарная очистка и утилизация отходов; с).подготовка сырья; d).водоподготовка; е).химическая переработка сырья; f).энергетическая система; g)система управления.	Средний	5
7	ОПК- 1.1 ОПК- 1.3	Как увеличить равновесную степень превращения в реакции дегидрирования бутана? а).отношение константы скорости реакции в прямом направлении к константе скорости в обратном направлении; б).логарифм отношения произведения парциальных давлений продуктов реакции к произведению парциальных давлений исходных реагентов; в).отношение константы скорости обратной реакции к константы скорости обратной реакции к константе скорости прямой реакции; г).отношение произведения концентраций продуктов реакции к произведению концентраций исходных реагентов со стехиометрическими коэффициентами в показателях степеней концентраций.	Перечислить верные утверждения	Средний	5
8	ОПК- 1.1 ОПК- 1.3 ОПК- 3.1	Сопоставьте тип реакции и вид зависимости ее скорости от температуры:	а).простая обратимая экзотермическая реакция; б). простая необратимая экзотермическая реакция;	Средний	5

		2 3	в) .простая обратимая эндотермическая реакция.		
9	ОПК- 1.1 ОПК- 1.3 ОПК- 3.1	На графике приведены зависимости скорости простых необратимых реакций от температуры с разными энергиями активации E_1 и E_2 . Какое соотношение между E_1 и E_2 ?	a) $E_1 > E_2$; 6) $E_1 < E_2$; B) $E_1 \approx E_2$.	Средний	5
10	ОПК- 1.1 ОПК- 1.3 ОПК- 3.1	Сопоставьте порядок простой необратимой реакции <i>n</i> и вид зависимости ее скорости <i>r</i> от степени превращения <i>x</i> исходного вещества 1 2 3 4	a) n = 0; б) n = 1; в) n > 1; г) n < 1.	Средний	5

11	ОПК- 1.1 ОПК- 1.3 ОПК- 3.1	Сопоставьте вид сложной реакции и вид зависимости дифференциальной избирательности от степени превращения исходного вещества (глубины протекания реакции)	а)последовательная реакция; б) параллельная реакция, $n_1 > n_2$ (n_1 , n_2 – порядки целевой и побочной реакций); в) параллельная реакция, $n_1 < n_2$; г) параллельная реакция, $n_1 = n_2$.	Средний	5
12	ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Как меняется дифференциальная селективность S_R для параллель- n_1 R ной реакции A n_2 S C увеличением концентрации исходного вещества A , если $n_1 > n_2$?	а) увеличивается; б) уменьшается; в) не меняется.	Средний	5
13	ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Как меняется дифференциальная селективность S_R для параллель- параллель- n_1 R ной реакции A n_2 S C увеличением степени превращения исходного вещества A , если $n_1 > n_2$?	а) увеличивается; б) уменьшается; в) не меняется.	Средний	5
14	ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Какие из предложенных фиков характеризуют пределение концентрации робразного реагента А вокруг и три твердой частицы для ерогенного процесса "газ – рдое", протекающего в тетической области?		Средний	5

15	ОПК- 1.1 ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Какие из представленных графиков отображают распределение концентрации газообразного реагента А вокруг и внутри твердой частицы для гетерогенного процесса "газ — твердое", протекающего во внутридиффузионной области?	а) 1 б)2 в) 3 г) 3 д) 4 е) 5	Средний	5
16	ОПК- 1.1 ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Рассчитайте теоретический расходный коэффициент 18%-ного раствора едкого натра для мерсеризации 1 т целлюлозы, содержащей 5% влаги и 4% примесей. Мт целлюлозы =/г-162; Мг едкого натра=40.	Введите число	Высокий	8
17	ОПК- 1.1 ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Выберите систему разделения смеси компонентов A, B и C: 1 2 3 Обе схемы примерно равноценны Состав смеси и свойства компонентов: Комп.Ткипен, ОС Состав смеси, мол. % A 80 10 B 82 15 C 100 75	a) 1 6) 2 B)3	Высокий	8
18	ОПК- 1.1 ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	Химико-технологическая система (ХТС) состоит из следующих стадий: - регенерация тепла продуктов реакции исходным веществом; - химическое превращение; -разделение реакционной массы на ее составляющие.	Введите число	Высокий	8

		Какая	из указа) Д Д 1	инных сх	ем отн	вечает			
19	ОПК-	Чему ј	•	онстант		-	a). 0,024;	Высокий	8
	1.1 ОПК- 1.2 ОПК- 1.3	кислот	гы на аг ри темі	орбции ктивиро ператур	б) 0,038; в).0,056				
	ОПК- 3.1	Смоль/л	0,001	0,003	0,004	0,005			
		T	0,00004	0,00012	0,00015	0,00019			
20	ОПК- 1.1 ОПК- 1.2 ОПК- 1.3 ОПК- 3.1	окисле контан т=0,25	ения S0 кта с ка с.	объем ка 02 в SO3, тализат 0280 м ³	если ором		 а) 0.85 м³ б). 0,71 м³ в) 0,355м³ 	Высокий	8