Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор должность: ректор Дата подписания: 20.06.2025 09:15:14

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Математический анализ

Квалификация выпускника	бакалавр бакалавр, магистр, специалист
Направление	27.03.04
подготовки	шифр
	Программная инженерия
•	наименование
Направленность	Программное обеспечение компьютерных систем
(профиль)	наименование
Форма обучения	заочная
	наименование
Кафедра-	Прикладная математика
разработчик	наименование
Выпускающая	Автоматики и компьютерных систем
кафедра	наименование

Типовые задания для контрольной работы за 1-ый семестр

- 1. Найти производную функции $y = arctg^3 \ln \frac{\sqrt{x}}{x+2}$.
- 2. Провести полное исследование функции $f(x) = x^2 + \frac{1}{x^2}$ и построить ее график.
- 3. Найти интегралы

a)
$$\int \frac{xdx}{(5-3x^2)^7}$$
; 6) $\int \frac{2x+5}{x^3-x^2+2x-2} dx$ B) $\int x \arcsin 2x dx$.

Типовые задания для контрольной работы за 2-ой семестр

1. Исследовать ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} n^3 \operatorname{tg}^2 \frac{1}{n^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{n!}{3^{n+2}}$; B) $\sum_{n=1}^{\infty} \frac{n+1}{n}$;

$$6) \sum_{1}^{\infty} \frac{n!}{3^{n+2}}$$

B)
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$
;

$$\Gamma$$
) $\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln (\ln n)}$; д) $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{2 \cdot 5 \cdot 8 \cdot ... \cdot (3n-1)}$.

2. Найти область сходимости рядов:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2x+5)^n}{n^2}$$
; 6) $\sum_{n=1}^{\infty} \frac{(2-x)^n}{n+1}$; B) $\sum_{n=1}^{\infty} \frac{x^n}{3n}$.

B)
$$\sum_{n=1}^{\infty} \frac{x^n}{3n}$$

Типовые вопросы и практические задания к экзамену за первый семестр

20 HOUSE THE HOVEDOTTONE OVERVIEW HOLLD (2 HOUSE)	Рин эо ногина
Задание для показателя оценивания дескриптора «Знает» Сформулируйте развернутые ответы на следующие	Вид задания теоретический
	теоретический
теоретические вопросы (сформулировать основные	
определения, теоремы, свойства; привести доказательства	
основных теорем, продемонстрировать примеры, при	
необходимости проиллюстрировать ответ графиками,	
рисунками):	
1. Определение функции. Способы ее задания. Графики элементарных функций.	
2. Предел числовой последовательности. Монотонные	
последовательности. Ограниченные последовательности.	
Верхняя, нижняя, точная верхняя, точная нижняя грани	
числовой последовательности.	
3. Теоремы о сходящихся последовательностях. Число e .	
4. Предел функции. Бесконечно малые и бесконечно	
большие функции. Их свойства.	
5. Основные теоремы о пределах.6. Замечательные пределы. Сравнение бесконечно малых.	
7. Непрерывность функции. Классификация точек разрыва.	
8. Свойства функций непрерывных на отрезке (теоремы	
Коши, Вейерштрасса первая и вторая).	
9. Определение производной функции. Определение	
дифференцируемой функции. Геометрический смысл	
производной. Односторонние производные.	
10. Общие правила дифференцирования (производная	
суммы, произведения частного функций, производная сложной функции). Производные элементарных функций.	
11. Дифференциал функции. Геометрический смысл.	
Дифференциал сложной функции. Инвариантность формы	
первого дифференциала.	
12. Производные и дифференциалы высших порядков.	
Дифференцирование функции заданной параметрически.	
13. Свойства дифференцируемых функций (Теоремы Ферма,	
Ролля, Лагранжа, Коши). Правило Лопиталя. 14. Формула Тейлора-Маклорена.	
15. Возрастание и убывание функций. Экстремумы функций.	
Необходимое и достаточное условия существования	
экстремума функции.	
16. Выпуклость функции. Точки перегиба.	
17. Асимптоты. Исследование функций. Схема построения	
графиков функций	
18. Первообразная функции и неопределенной интеграл.	
Свойства неопределённого интеграла. Таблица основных	
интегралов.	

19.	Основные	методы	интегрирования	(Замена	переменной
	интегрировани	ия, интег	рирование по час	тям).	

- 20. Определенный интеграл.
- 21. Основные свойства определенного интеграла (свойства, формула Ньютона-Лейбница, определенный интеграл с переменным верхним пределом, теорема о среднем, замена переменной в определенном интеграле, интегрирование по частям).
- 22. Приближенное вычисление определенных интегралов (метод прямоугольников, метод трапеций, метод Симпсона).
- 23. Несобственные интегралы.
- 24. Геометрические приложения определенного интеграла (площадь плоской фигуры, площадь в полярных координатах, объем тела по известным площадям параллельных сечений, объем тела вращения, длина дуги, площадь поверхности вращения).

Задание для показателя оценивания дескрипторов «Умеет», «Владеет»	Вид задания
№ 1. Найти производные функций	практический
a) $x^5 \ln x$; 6) $\frac{x-1}{x+1}e^{-x}$; B) $arctg(\sqrt{x})-\sqrt{x}$; Γ)	
$\left(3^{\sin 2x} - \cos^2 2x\right)^{-3};$	
д) $x \sin y - y \cos x = 0$; e) $\begin{cases} y = 2 \sin t \\ x = 3 \cos t \end{cases}$.	
№ 2. Найти пределы	
a) $\lim_{x \to +\infty} \frac{x^2}{e^x}$; 6) $\lim_{x \to 0} \frac{x + \sin 2x}{x}$; B) $\lim_{x \to 0} \frac{\ln(\cos x)}{x^2}$; Γ	
$\lim_{x\to\infty} \left(\frac{1+x^2}{2+x^2}\right)^{4-x^2};$	
д) $\lim_{x \to 0} \frac{\sin 3x}{\sqrt{x+2} - \sqrt{2}};$ ж) $\lim_{x \to \infty} \frac{5x^3 - x^2 + 4}{-7x^3 + x};$	
3) $\lim_{x \to 2} \left[\frac{3x^2 + x}{(x-2)(x^2 + x + 1)} - \frac{2}{x-2} \right].$	
№ 3. Разложить в ряд Маклорена	

a)
$$\sin x^2$$

6)
$$e^{-x^2+1}$$
.

Провести полное исследование (асимптоты, области возрастания и убывания, выпуклости вверх и вниз, экстремумы, точки перегиба и т.д.) и построить график функции

a)
$$y = \frac{x}{4 + x^2}$$
;

б)
$$e^{1/(x-2)}$$
.

№ 5. Вычислить интегралы

a)
$$\int \frac{xdx}{\left(5 - 3x^2\right)^7};$$
 6) $\int \left(x^3 + 5x\right) \ln x dx;$

б)
$$\int (x^3 + 5x) \ln x dx$$
;

$$\int \frac{(2x+5)dx}{x^3 - x^2 + 2x - 2};$$

$$\Gamma) \int \frac{dx}{1 + \sqrt{2x + 1}} :$$

$$\mathbf{J} \int \frac{dx}{2\cos^2 x + 3\sin^2 x}$$

e)

ж)
$$\int_{0}^{1} x \ln(1+x) dx$$

$$\Gamma) \int \frac{dx}{1+\sqrt{2x+1}}; \qquad \qquad D) \int \frac{dx}{2\cos^2 x + 3\sin^2 x}$$
$$\int x \arcsin 2x dx;$$
$$M) \int_0^1 x \ln(1+x) dx \qquad \qquad 3) \int_5^\infty \frac{dx}{x^2 - 8x + 20}.$$

Типовые вопросы и практические задания к экзамену за второй семестр

За	дание для показателя оценивания дескриптора «Знает»	Вид задания
Сфо	рмулируйте развернутые ответы на следующие	теоретический
теор	ретические вопросы (сформулировать основные	
onpe	еделения, теоремы, свойства; привести доказательства	
осно	вных теорем, продемонстрировать примеры, при	
	бходимости проиллюстрировать ответ графиками,	
pucy	инками):	
1.	Числовые ряды. (Основные понятия и свойства).	
1.	Необходимый признак сходимости рядов.	
2.	Положительные ряды и признаки их сходимости. (Признак сравнения, Даламбера, радикальный признак Коши, интегральный признак Коши).	
3.	Знакочередующиеся Ряды (признак Лейбница). Абсолютная и условная сходимость.	
4.	Степенные ряды. (Область сходимости, теорема Абеля, интервал сходимости, радиус сходимости). Свойства степенных рядов. Ряд Тейлора и Маклорена (существование и единственность разложения, ряд Тейлора элементарных функций).	
5.	Тригонометрические ряды. (Тригонометрическая система функций). Ряд Фурье (Сходимость ряда Фурье, ряды по косинусам и синусам, ряд Фурье на произвольном промежутке). Комплексная форма ряда Фурье. Преобразование Фурье.	
6.	Функции нескольких переменных. Предел и непрерывность функции. Свойства непрерывных функций.	
7.	Частные производные. Полный дифференциал. Понятие дифференцируемости функции. Необходимое и достаточное условие дифференцируемости.	
8.	Производные и дифференциал сложной функции. Дифференцирование неявной функции.	
9.	Частные производные и дифференциалы высших порядков. Формула Тейлора для функций двух переменных.	
10.	Экстремумы функции двух переменных. (Необходимое условие существование экстремума, достаточное условие существование экстремума, условный экстремум). Метод наименьших квадратов.	

- 11. Двойные интегралы. (Определение, свойства, теорема существования). Геометрический и физический смысл двойного интеграла. Сведение двойного интеграла к повторному интегралу в прямоугольной области.
- 12. Сведение двойного интеграла к повторному в криволинейной области. Двойной интеграл в полярных координатах. Интеграл Эйлера-Пуассона. Вычисление площади кривой поверхности.
- 13. Тройные интегралы. Вычисление тройных интегралов. Тройной интеграл в цилиндрических и сферических координатах.
- 14. Криволинейные интегралы. (Определения, свойства, криволинейные интегралы первого и второго рода, независимость криволинейного интеграла от пути интегрирования). Вычисление криволинейных интегралов первого и второго рода.
- 15. Поверхностные интегралы. (Определения, поверхностные интегралы первого и второго рода). Вычисление поверхностных интегралов. Связь между поверхностными интегралами.
- 16. Формулы Грина, Стокса и Остроградского.

Задание для показателя оценивания дескриптора «Умеет»,
«Впалеет»

Вид задания

1. Исследовать ряды на сходимость:

практический

a)
$$\sum_{n=1}^{\infty} \left(\frac{2n^2 + 2n + 1}{5n^2 + 2n + 1} \right)^n$$
; 6) $\sum_{n=1}^{\infty} \frac{\left(2^n + 1\right)^2}{n4^n}$; B) $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} \left(n + 1\right)}{n^2 + n + 1}$;

$$\Gamma$$
) $\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{\ln^2\left(n+2\right)}$; д) $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{2^{n-1}}{\left(n-1\right)!}$.

2. Найти область сходимости рядов:

a)
$$\sum_{n=1}^{\infty} \frac{3^n x^n}{\sqrt{(3n-2)2^n}}$$
; 6) $\sum_{n=1}^{\infty} \frac{n! x^n}{(n+1)^n}$; B) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{2n-1}$.

- 3. Разложить в ряд Фурье периодическую функцию f(x) с периодом $2l, f(x) = e^x$ при -l < x < l.
 - 4. Найти частные производные $u = \ln \left(\frac{1}{\sqrt[3]{x}} \frac{1}{\sqrt[3]{t}} \right)$.

- 5. Найти полный дифференциал $u = \sqrt{x^2 + y^2 + z^2}$.
- 6. Найти $\frac{\partial z}{\partial u}$ и $\frac{\partial z}{\partial v}$, если $z = \frac{\operatorname{tg} x}{\ln y}$, где $x = u^v$, $y = v^{2u}$.
- 7. Пусть $x=z \ln(z/y)$. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$.
- 8. Найти экстремумы функции $z=x^3+y^3-15xy$.
- 9. Найти экстремум функции z=xy при условии, что $x^2+y^2=2$.
- 10. Изменить порядок интегрирования $\int\limits_{0}^{a} dy \int\limits_{a-y}^{\sqrt{a^2-y^2}} dx$.
- 11. Записать с помощью двойных интегралов и вычислить площадь, ограниченные линиями xy=4, y=x, x=4.
- 12. Вычислить объем тела внутри цилиндра $x^2+y^2+ax=0$, ограниченного плоскостями z=0 и z=a+x+y.
- 13. Вычислить площадь части плоскости 2x+3y+4z=1 отсеченной координатными плоскостями.
- 14. Вычислить $\iiint_V (x+y+z) dx dy dz$, где V ограничена $1=x^2+y^2, z=0, z=1$.
- 15. Даны точки $A(\alpha;0;0),\ B(\alpha;\alpha;0)$ и $C(\alpha;\alpha;\alpha)$. Вычислить интеграл $\int y dx + z dy + x dz$ по прямой OC и по ломанной OABC.
- 16. Вычислить криволинейный интеграл первого рода от функции с тремя переменными $\int\limits_{L} \left(5z-2\sqrt{x^2+y^2}\right) dl$, где L дуга кривой, заданной параметрически $x = t\cos t$, $y = t\sin t$, z = t, $0 \le t \le \pi$.
- 17. Вычислить $\iint_{(S)} (x\cos\alpha + y\cos\beta + z\cos\gamma)dS$ по верхней поверхности плоскости x+y+z=a расположенной в первом октанте, а

поверхности плоскости x+y+z=a, расположенной в первом октанте, а α , β , γ – углы нормали к поверхности с осями координат.

18. Вычислить поверхностный интеграл $\iint_S x dy dz + y dx dz + z dx dz$ по прямоугольному параллелепипеду, ограниченному плоскостями x = 1, x = 0, y = 0, y = 2, z = 0, z = 4.