Документ подписа Тектовое к задание пр	дня диагностического тестирования по дисциплине:
Информация о владельце:	
ФИО: Косенок Сергей Михайдовин С.ЛИТЕ.	ЛЬНАЯ ГИДРОДИНАМИКА И ТЕПЛООБМЕН
Дата подпКоды: НОПРОВЛЕНИЯ	01.03.02 Прикладная математика и информатика
Уникальны й одтрого выси ключ:	
е3а68f3 <mark>на 1667674b54f4998099q3d6bfdcf836</mark> Направленность	«Прикладная математика и информатика»
(профиль)	
Форма обучения	очная
Кафедра-разработчик	Прикладной математики
Выпускающая кафедра	Прикладной математики

Прове ряема я компе тенция	Задание	Варианты ответов	Тип сложност и вопроса
ПК-2	1. Запишите однородное уравнение теплопроводности для случая трех пространственных измерений.		Низкий
ПК-2	2. Запишите граничное условие первого рода на поверхности <i>S</i> для уравнения теплопроводности.		Низкий
ПК-2	3. Запишите граничное условие второго рода на поверхности <i>S</i> для уравнения теплопроводности.		Низкий
ПК-2	4. Запишите граничное условие третьего рода на поверхности <i>S</i> для уравнения теплопроводности.		Низкий
ПК-2	5. Запишите начальное условие для уравнения теплопроводности.		Низкий
ПК-2	6. Запишите закон теплопроводности Фурье		Средний
ПК-2	7. Запишите закон теплопередачи Ньютона — Рихмана.		Средний
ПК-2	8. Запишите уравнение непрерывности для сжимаемой среды.		Средний
ПК-2	9. Запишите уравнение непрерывности для несжимаемой среды.		Средний

ПК-2 10. Запишите граничные условия для уравнения движения вязкой жидкости на покоящейся твердой границе S	Средний
движения вязкой жидкости на покоящейся твердой границе S	l l
покоящейся твердой границе S	
(условия прилипания).	
ПК-2 11. Запишите обобщенное	Средний
уравнение конвекции-	
диффузии.	
ПК-2 12. Запишите обобщенное	Средний
уравнение конвекции-диффузии	
в дивергентной форме.	
ПК-2 13. Запишите выражение для	Средний
числа Пекле, пояснив смысл	
определяющих его величин.	
ПК-2 14. Запишите выражение для	Средний
числа Рейнольдса, пояснив	
смысл определяющих его	
величин. ПК-2 15. Запишите выражение для	Средний
числа Прандтля, пояснив смысл	Среднии
определяющих его величин.	
ПК-2 16. Запишите соотношение	Высокий
	Высокии
между числами Пекле,	
Рейнольдса и Прандтля.	
ПК-2 17. Запишите уравнение	Высокий
движения вязкой несжимаемой	
жидкости в векторной форме.	
ПК-2 18. Запишите математическую	Высокий
модель стационарного	
распределения температуры	
неподвижной среды в квадрате	
со стороной длиной L, если на	
левой границе температура	
равна $\mu(y)$, на нижней границе	
задана нормальная	
составляющая плотности	
теплового потока $q(x)$, две	
другие границы	
теплоизолированы,	
коэффициент теплопроводности	
k = const , тепловые	
источники отсутствуют.	
ПК-2 19. Запишите математическую	Высокий
модель эволюции	
температурного поля	
несжимаемой жидкости в шаре	
радиуса R, если температура	
$T_0 = const,$	
начальная температура $T_{in}(\mathbf{r})$,	
плотность тепловых источников	
f(r), скорость жидкости	
v(r,t) считается известной,	
теплофизические	
$\begin{bmatrix} 1 \\ x a p a k T e p u c T u k u \end{bmatrix}$ харак (ρ, c, k) среды	
постоянны.	

ПК-2	20. Запишите математическую	Высокий
	модель стационарного течения	
	изотермической несжимаемой	
	жидкости в квадратной каверне	
	со стороной длиной L , верхняя	
	граница которой движется	
	равномерно со скоростью V_0 ,	
	другие границы неподвижны.	