Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ХАНТЫ-МАНСИЙСКОГО АВТОНОМНОГО ОКРУГА-ЮГРЫ Должность: ректор

Дата подписания: 25.07.2024 08:52:42 "Сургутский государственный университет"

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

УТВЕРЖДАЮ

Проректор по учебно-методической работе

Е.В. Коновалова

13 июня 2024 г., протокол УМС № 5

Биофизика

рабочая программа дисциплины (модуля) Программа кандидатского экзамена

Закреплена за кафедрой Экологии и биофизики

Шифр и наименование научной специальности 1.5.2. Биофизика

Форма обучения очная

Часов по учебному плану 144 Вид контроля: экзамен

в том числе:

48 аудиторные занятия 60 самостоятельная работа 36 часов на контроль

Распределение часов дисциплины

Курс		4
Вид занятий	УП	РΠ
Лекции	16	16
Практические	32	32
Итого ауд.	48	48
Контактная работа	48	48
Сам. работа	60	60
Часы на контроль	36	36
Итого	144	144

Программу составил(и):
д-р биол. наук, профессор Филатов М.А

Рабочая программа дисциплины

Биофизика

разработана в соответствии с ФГТ:

Приказ Минобрнауки России от 20.10.2021 г. №951 "Об утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов)".

Рабочая программа одобрена на заседании кафедры

Экологии и биофизики

Протокол от 06.03.2024 г. № 04-24 Зав. кафедрой канд. биол. наук, доцент Шорникова Е.А..

Председатель УМС (УС) института естественных и технических наук директор института, канд. хим. наук, доцент Петрова Ю.Ю. Протокол от 24 мая 2024 г. № 6

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ		
1.1	Целью дисциплины является глубокая специализированная подготовка в выбранном направлении, владения навыками	
	современных методов исследования; формирование у обучающихся умение находить и анализировать современную	
	научную информацию в области биофизики; формирование и совершенствование навыков самостоятельной науч-	
	но-исследовательской работы.	
	Дисциплина направлена на подготовку к сдаче кандидатского экзамена по научной специальности 1.5.2. Биофизика.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО		
2.1	Предшествующими для изучения дисциплины являются:	
2.1.1	результаты освоения дисциплин, направленных на подготовку к сдаче кандидатских экзаменов: «История и философия науки», «Иностранный язык»; факультативных дисциплин «Стохастика в изучении хаоса параметров биосистем», «Метод многомерных фазовых пространств в изучении биосистем»;	
2.1.2	результаты научной (научно-исследовательской) деятельности аспирантов, направленной на подготовку диссертации к защите;	
2.1.3	результаты научной (научно-исследовательской) деятельности аспирантов, направленной на подготовку публикаций.	
2.1.4	результат прохождения научно-исследовательской практики.	
2.2	Последующими к изучению дисциплины являются знания, умения и навыки, используемые аспирантами:	
2.2.1	в научной (научно-исследовательской) деятельности аспирантов, направленной на подготовку диссертации к защите;	
2.2.2	в научной (научно-исследовательской) деятельности аспирантов, направленной на подготовку публикаций;	
2.2.3	при прохождении итоговой аттестации.	

	3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)			
В результ	В результате освоения дисциплины обучающийся должен			
3.1	Знать:			
3.1.1	теоретические основы, современные проблемы и достижения биофизики;			
3.1.2	законы детерминистско-стохастического подхода и методы расчета для описания сложных (complexity) медико- биологических процессов и объектов с позиций ТХС;			
3.1.3	методы описания неравновесных процессов на основе статистической физики (кинетические модели, закономерности перехода в состояние равновесия).			
3.2	Уметь:			
3.2.1	генерировать новые идеи при решении исследовательских и практических задач в области биофизики, в том числе в междисциплинарных областях;			
3.2.2	самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области, -критически анализировать и оценивать современные научные достижения в области биофизики;			
3.2.3	выполнять расчет и построение матриц межаттракторных расстояний для разных групп (по полу или возрасту) населения (группы спортсменов, группы в условиях саногенеза и патогенеза);			
3.2.4	проводить анализ полученных экспериментальных данных, а также делать качественные выводы о состоянии различных функциональных систем организма человека с учетом возрастных и половых различий.			
3.3	Владеть:			
3.3.1	современными методами исследования и информационно-коммуникационными технологиями в области биофизики и синергетики биосистем;			
3.3.2	навыками использования информативных нейрофизиологических показателей сенсорных реакций, внимания, памяти и речи для -своевременной реабилитации;			
3.3.3	методами идентификации стационарных режимов и расчета скорости эволюции биосистем в фазовом пространстве состояний (ФПС).			

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
Код занятия	Наименование разделов и тем /вид занятия/	Курс	Часов	Литература	Примечание
1.1	Молекулярная биофизика /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.2	Молекулярная биофизика /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.3	Молекулярная биофизика /Ср/	4	6	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.4	Энтропийный подход в оценке параметров биосистем /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.5	Энтропийный подход в оценке параметров биосистем /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	

1.6	Энтропийный подход в оценке параметров биосистем /Ср/	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.7	Биофизика клеточных процессов /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.8	Биофизика клеточных процессов /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.9	Биофизика клеточных процессов /Ср/	4	6	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.10	Введение в биофизику сложных систем. Сложные процессы природе /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.11	Введение в биофизику сложных систем. Сложные процессы вприроде /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.12	Введение в биофизику сложных систем. Сложные процессы вприроде /Ср/	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.13	Границы стохастики и возможности описания хаоса в медико- биологических системах /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.14	Границы стохастики и возможности описания хаоса в медико- биологических системах /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.15	Границы стохастики и возможности описания хаоса в медико- биологических системах /Ср/	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.16	Основные понятия и методы теории хаоса-самоорганизации(TXC) /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.17	Основные понятия и методы теории хаоса-самоорганизации(TXC) /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.18	Основные понятия и методы теории хаоса-самоорганизации(TXC)/Cp/	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.19	Эволюция понятия гомеостаза. От детерминизма к стохастике и хаосу- самоорганизации /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.20	Эволюция понятия гомеостаза. От детерминизма к стохастике и хаосусамоорганизации /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.21	Эволюция понятия гомеостаза. От детерминизма к стохастике и хаосусамоорганизации /Ср/	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.22	Гипотеза Н.А. Бернштейна о «повторении без повторений» и complexity W. Weaver /Лек/	4	2	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.23	Гипотеза Н.А. Бернштейна о «повторении без повторений» и complexity W. Weaver /Пр/	4	4	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.24	Гипотеза Н.А. Бернштейна о «повторении без повторений» и complexity W. Weaver	4	8	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	
1.25	Контр.раб./	4	0	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	Задание для кон- трольной работы
1.26	/Экзамен/	4	36	Л1.1 Л1.2 Л1.3 Л1.4 Л1.5 Л1.6 Л1.7	Вопросы для подготовки к кандидатскому экзамену

5. ОЦЕНОЧНЫЕ СРЕДСТВА

5.1. Контрольные вопросы и задания

Проведение текущего контроля успеваемости

Тема 1. Молекулярная биофизика

Вопросы для устного опроса: 1. Дайте определение биофизики как науки. Цели, задачи и структура биофизики.

- 2. Назовите основные разделы биофизики, кратко их охарактеризуйте.
- 3. Методологические вопросы молекулярной биофизики.
- 4. Межпредметные связи биофизики с медико-биологическими и клиническими дисциплинами.
- 5. Что является мономером белка? Какими связями поддерживается первичная структура белка?
- 6. В чем состоит механизм действия воды на структуру биомолекул?
- 7. Физические и физико-химические свойства биологических мембран.
- 8. Функции биологических мембран. Модели биологических мембран.
- 9. Искусственные мембраны и их значение в медицине.
- 10. Уравнения диффузии, константа проницаемости. Типы диффузий.
- 11. Проницаемость биологических мембран для ионов.
- 12. Понятие о полупроницаемости, селективности и неспецифичности биомембран.
- 13. Гипотеза о натриевом насосе.

Практическая работа: «Молекулярная биофизика».

Задание для самостоятельной работы:

- 1. Что представляет собой четвертичная структура белка? Чем агрегаты (ассоциаты) белка отличаются от четвертичной структуры?
- 2. Опишите вторичную структуру белка. Кто впервые исследовал вторичную структуру белка?
- 3. Охарактеризуйте типы вторичной структуры белка. Какими связями она поддерживается?
- 4. Опишите механизм возникновения водородной связи и вандерваальсовых взаимодействий. Чему равна длина и энергияэтих связей?
- 5. Охарактеризуйте третичную структуру белка. Что представляет собой домен? Чем доменная структура отличается от четвертичной структуры?
- 6. Что является мономером нуклеиновой кислоты? Какими связями поддерживается первичная структура нуклеиновых кислот?
- 7. Что собой представляет вторичная структура ДНК? Охарактеризуйте ее.
- 8. Опишите механизм возникновения гидрофобных взаимодействий.
- 9. Происхождение ξ-потенциала и характеристика основных параметров, определяющих его величину.
- 10. Пассивные электрические явления в биоструктурах.
- 11. Типы поляризации. Зоны дисперсии электрических параметров биологических объектов.
- 12. Равновесный электрохимический потенциал.
- 13. Равновесие Доннана.
- 14. Свободные радикалы при цепных реакциях окисления липидов в мембранах и других клеточных структурах.
- 15. Образование свободных радикалов в тканях в норме и при патологических процессах.
- 16. Роль активных форм кислорода.
- 17. Естественные антиоксиданты тканей и их биологическая роль.

Тема 2. Энтропийный подход в оценке параметров биосистем

Вопросы для устного опроса:

- 1. Основные понятия термодинамики.
- 2. Первое начало термодинамики. Второе начало термодинамики. Энтропия.
- 3. Теорема И.Р. Пригожина. Постулаты Г. Хакена.
- 4. Второй закон термодинамики для открытых систем. Необратимость в биосистемах.
- 5. Понятие энтропии для живых систем.
- 6. Первое и второе начало термодинамики для живых систем.
- 7. Статистический смысл энтропии.
- 8. Количественные характеристики хаотических сигналов в биосистемах.
- 9. Теорема Пригожина в изучении стационарных состояний.
- 10. Изменение энтропии в открытых системах. Постулат Пригожина.
- 11. Гомеостатические системы не могут описываться стохастически или детерминированным хаосом? Практическая работа: «Энтропийный подход в оценке параметров биосистем».

Задания для самостоятельной работы:

- 1. Что такое пространство состояний и фазовый портрет системы?
- 2. Почему изменение двигательных паттернов движения относят к самоорганизующимся процессам?Ко-

личественные характеристики хаотических сигналов в биосистемах.

- 3. В чем отличие слабо неравновесных и сильно неравновесных условий?
- 4 Второй закон термодинамики для открытых систем. Необратимость в биосистемах. Расчет энтропии Шеннона на ЭВМ.

Контрольная работа (тестирование) по теме «Энтропийный подход в оценке параметров биосистем»

- 1. Энтропия физическая величина.
- а) она имеет смысл для физических систем;
- б) ее можно наблюдать и фотографировать;
- в) ее можно измерять и вычислять;
- г) она характеризует превращение энергии.
- 2. 2-е начало термодинамики:
- а) не применимо к диффузии б)

работает в теореме Нернста

- в) применима к диффузии на мембране
- 3. Термодинамика Пригожина требует при эволюции СТТ:
- а) максимума энтропии Е
- б) изменение скорости прироста энтропии P=dE/dtв)

неизменности P=dE/dt

- 4. Первое начало термодинамики утверждает, что ...
- а) внутренняя энергия замкнутой системы изменяется за счет сообщения ей количества теплоты и совершения над нейработы;
- б) количество подведенной к системе теплоты тратится на увеличение ее внутренней энергии;
- в) механическая энергия замкнутой системы не изменяется;
- г) энергия не исчезает и не возникает, а переходит от одного тела к другому и из одного вида в другой.
- 5. Во второй половине XX века в научном мировоззрении появилась идея самоорганизации материи. Общие акономерности самоорганизации изучают ...
- а) равновесная термодинамика;
- б) неравновесная термодинамика;в)

химическая кинетика;

- г) синергетика.
- 6. 2-й закон термодинамики требует для энтропии S:
- а) чтобы S →max
- б) минимума P=ds/dtв)

минимума S

- 7. Теорема Гленсдорфа-Пригожина требует:
- a) min энтропии
- б) минимума P=ds/dt в)

максимума P=ds/dt

- 8. Энтропия в биосистемах:
- а) нужна для анализа динамики
- б) нужна для расчета устойчивостив) для

выявления стационарности

- 9. С помощью энтропии мы:
- а) идентифицируем особенности биосистемб)

выявляем изменения в СТТ

- в) узнаем об устойчивости СТТ
- 10. Внешние возмущения:
- а) изменяют параметры КА
- б) изменяют параметры функций распределения f(x)в)

нарушают значения энтропии Е

- 11. В процессе кристаллизации вещества из расплава энтропия
- а) не изменяется; б) увеличивается; в) уменьшается;
- г). сначала увеличивается, а затем уменьшается.
- 12. Любая замкнутая система в соответствии со вторым началом термодинамики ...
- а) развивается эволюционным путем от хаотического состояния к упорядоченному;б) не

имеет своего состояния;

в) развивается через последовательность скачков; г)

приходит в состояние хаотического равновесия.

- 13. Биопотенциалы возникают:
- а) при возникновении градиентов концентраций;
- б) при диффузии;
- в) за счет энергии извне.
- 14. В процессе сублимации йода (переход из твердого состояния в газообразное) энтропия ...
- а) возрастает; б) не изменяется; в) уменьшается;
- г) сначала увеличивается, а затем уменьшается.
- 15. При экзотермических реакциях энергия выделяется за счет......
- а) усложнения структуры молекул;б)

упрощение структуры молекул;

- в) увеличение суммарной энергии связи атомов в конечных молекулах;
- г) уменьшение суммарной энергии связи атомов в конечных молекулах;
- д) уменьшения массы конечных молекул в сравнении с исходными.

Тема 3. Биофизика клеточных процессов

Вопросы для устного опроса:

- 1. Физические вопросы строения и функционирования мембран.
- 2. Транспорт веществ через мембраны. Пассивный транспорт.
- 3. Простая и облегченная диффузия. Математическое описание пассивного транспорта.
- 4. Активный транспорт ионов.
- 5. Механизм активного транспорта на примере натрий-калиевого насоса.
- 6. Мембранные потенциалы и их ионная природа.
- 7. Потенциал покоя. Потенциал действия. Уравнение Нернста.
- 8. Уравнение Гольдмана-Ходжкина-Катца для мембранного потенциала.
- 9. Механизм генерации потенциала действия.
- 10. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- 11. Механические свойства живых тканей.
- 12. Механические свойства жидкости.
- 13. Механические свойства твердых тел.
- 14. .Гармонические колебания.
- Затухающие колебания.

- 16. Волновые и квантовые свойства света. Закон Ампера. Сила Лоренца.
- 17. Закон отражения и преломления света.
- 18. Глаз как центрированная оптическая система.
- 19. Строение светопроводящего аппарата глаза. Оптические функции. Преломляющая сила глаза.
- 20. Понятия расстояние наилучшего зрения, ближняя точка глаза, угол зрения.
- 21. Недостатки оптической системы глаза человека и их компенсация.
- 22. Фотопревращения родопсина и их роль в зрительной рецепции.

Практическая работа: «Биофизика клеточных процессов».

Задания для практической работы:

- 1. Определение электроемкость биомембран. Определение электроемкости конденсаторов. Экспериментальное определение электроёмкости различных тел; проверка законов последовательного и параллельного соединения конденсаторов.
- 2. Моделирование биоэлектрической активности формального нейрона.
- 3. Смоделировать на ЭВМ динамику изменения потенциала на мембране при E<h и E>h. Изучение влияния параметров модели (нейрона) на генерацию

Задания для самостоятельной работы:

- 1. Дать характеристику мембранных белков. Характеристика мембранных липидов. Транспорт электролитов. Электрохимический потенциал. Равновесие Доннана.
- 2. Пассивный транспорт. Движущие силы переноса ионов. Электродиффузионное уравнение Нернста-Планка. Уравнение Гольдмана для потенциала и ионного тока.
- 3. Активный транспорт. Электрогенный транспорт ионов. Явление поляризации в мембранах
- 4. Колебательные процессы в биологии. Автоколебательные процессы.
- 5. Каким параметром характеризуется быстрота затухания колебаний, и какие процессы в живой природе имеют колебательный характер?
- 6. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибрилляторных и глобулярных белков. Качественная структурная теория белка.
- 7. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи?
- 8. Дайте определение следующим понятиям:
 - 1. скорость света в вакууме
 - 2. скорость света в среде
 - 3. показатель преломления среды
 - 4. волновая поверхность
 - 5. когерентные источники волн
 - 6. гомоцентрические пучки лучей
 - 7. астигматические пучки лучей
 - 8. параксиальные лучи
 - 9. оптическая ось
 - 10. полюс зеркала
- 9. Продолжите высказывание:
 - 1. В радужной оболочке глаза имеется отверстие ...
 - 2. В сетчатке глаза расположено околопалочек и ... колбочек.
 - 3. Изображение в результате преломления оптической системы глаза получается...
 - 4. Зрительный пигмент родопсин состоит из...
 - 5. В анализаторах выделяют следующие отделы:...

10. Дайте ответы на следующие вопросы:

- 1. Какими ультрамикроскопическими особенностями характеризуются фоторецепторные клетки сетчатки?
- 2. Каковы строение и функции зрительного анализатора?
- 3. Кратко опишите действие постоянного и переменного тока на ткани организм человека и их использование в медицине.

11. Дайте определение следующим понятиям:

- 1. Натуральный показатель поглощения
- 2. Оптическая плотность
- 3. Мембранный потенциал
- 4. Гиперполяризация
- 5. Линейный коэффициент ослабления
- 6. Стабильные ядра
- 7. Постоянная распада
- 8. γ излучение
- 9. Возбуждение
- 10. Эквивалентная доза

Темы докладов с презентацией:

- 1. Структура и функционирование биологических мембран. Мембрана как универсальный компонент биологических систем.
- 2. Развитие представлений о структурной организации мембран.
- 3. Характеристика мембранных белков и мембранных липидов.
- 4. Пассивный и активный транспорт веществ через биомембраны.
- 5. Проницаемость и проводимость биологических мембран.
- 6. Молекулярные механизмы подвижности белковых компонентов сократительного аппарата мышц.
- 7. . Функционирование поперечнополосатой мышцы позвоночных.
- 8. Молекулярные механизмы немышечной подвижности.
- 9. Биоэлектрические явления в живом организме. Основы классификации биоэлектрических явлений и методы их регистра-

- 10. Регистрация биопотенциалов (БП). Потенциал покоя. Потенциал действия. Уравнение Нернста.
- 11. Уравнение Гольдмана-Ходжкина-Катца для мембранного потенциала.
- 12. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- 13. Кровь как неньютоновская жидкость. Режимы течения крови.
- 14. Основные гемодинамические показатели.
- 15. Пульсовая волна.
- 16. Эффект Доплера.

Тема 4. Введение в биофизику сложных систем. Сложные процессы в природе

Вопросы для устного опроса:

- 1. Понятие сложных систем, неопределенности и непредсказуемости.
- 2. Определение, классификация и описание динамических систем
- 3. Самоорганизация в физико-химических системах. Сложность в планетарном и космическом масштабах.
- 4. Диссипативные системы. Необратимость и диссипация в физике, химии и биологии.
- 5. Диссипативная функция. Диссипативные структуры. Стационарное состояние.
- 6. Неопределенность в биологических системах.
- 7. Детерминизм, стохастика и хаоса в биосистемах.
- 8. Понятие устойчивости и нелинейности биосистем.
- 9. Понятие детерминированного хаоса в биосистемах.
- 10. Самоорганизующийся хаос фундамент эмерджентности биосистем особый тип хаоса в природе.
- 11. Возможности стохастической обработки параметров систем с хаотической динамикой.

Темы докладов с презентацией:

- 1. Определение и характерные признаки сложных систем.
- 2. Самоорганизация и сложность в биологических системах.
- 3. Детерминистский, стохастический и хаотический подходы в описании биосистем.
- 4. Арсенал стохастики в изучении сложных систем.
- 5. Вероятностный характер медико-биологических процессов. Элементы теории вероятностей.
- 6. Математические основы глобальной нестабильности биосистем.

Задания для самостоятельной работы:

- 1. Выполнить анализ влияния статистической нагрузки мышц на параметры энтропии электромиограмм.
- 2. Оценить возможности стохастики и теории хаоса в обработке миограмм.
- 3. Сделать качественные выводы о невозможности использования стохастического подхода в описании биомеханических систем.
- 4. Напишите ведущее место в наборе отличий (и противоречий) между детерминистско-стохастической парадигмой и теорией хаоса-самоорганизации.
- 5. Какими свойствами обусловлена принципиальная непредсказуемость и неповторимость динамики поведения сложных динамических систем?
- 6. Перечислите 8-ми базовых постулатов компартментно кластерной теории биосистем.
- 7. Что можно измерять в ТХС и как такие величины интерпретировать?

Практическая работа: «Введение в биофизику сложных систем. Сложные процессы в природе».

Задания для самостоятельной работы

- 1. Почему гомеостатичные системы (СТТ) не являются объектом современной науки?
- 2. Чем закончилась дискуссия между complexity и синергетикой?
- 3. Что мы все-таки изучаем в самом гомеостазе (в живых системах)?
- 4. Если мы не можем дать определение системам третьего типа, то, что такое гомеостаз?
- 5. Дать определение 5-ти принципам организации систем третьего типа.

Тема 5. Границы стохастики и возможности описания хаоса в медико-биологических системах.

Вопросы для устного опроса:

- 1. Понятие о системах третьего типа.
- 2. Описать методику измерения степени близости к хаосу или к стохастике в динамике поведения ВСОЧ.
- 3. .Понятие хаоса в биосистемах.
- 4. Аналог принципа Гейзенберга в теории хаоса-самоорганизации: неопределенности 1-го и 2-го типа в биологии и медицине.
- 5. Почему стохастика неприменима к системам третьего типа?
- 6. Кинематика биосистем как эволюция основа современной биофизики и аналог механики Ньютона.
- 7. Принципы построения моделей сложных биосистем третьего типа в рамках ККТБ.
- 8. Метод "черного ящика" при исследовании сложных систем.
- 9. Моделирование медико-биологических процессов с помощью дифференциальных уравнений (развитие эпидемий, изменение со временем концентрации лекарственных веществ в организме, накопление и выведение радионуклидов и др.).
- 10. Физические основы электрографии (ЭКГ, ЭЭГ, ЭМГ, ЭРГ). Основные задачи клинической диагностики.

Практическая работа: «Границы стохастики и возможности описания хаоса в медико-биологических системах».

Контрольная работа (тестирование) по теме «Границы стохастики и возможности описания хаоса в медико-биологических системах».

Вариант 1

- 1.Трехкластерные модели:
- а) описывают сложные экосистемы;
- б) описывают биоценоз;
- в) описывают мышцы.
- 2. Модель диффузии вещества:
- a) dM/dt=aS dC

- б) dM/dt=aS Vc в) dM/dt=f(c)
- 3. Дифференциальные уравнения описывают:
- а) динамику биопроцесса
- б) скорость изменения x(t)
- в) зависимость скорости изменения переменой от самой переменой
- 4. Уравнение потенциала на мембране включает:
- a) E=RT/ZF*ln(a1/a2)
- б) E=Z0*lna1*a2
- E = f(c1,c2)
- 5. Методы системной биологии базируются на:
- а) понятие динамики x(t)
- б) на понятии системы
- в) на моделях
- 6. 2-й закон термодинамики требует для энтропии S:
- а) минимума
- б) минимума P=ds/dt
- в) S чтобы S →max
- 7. Компартментно-кластерные системы охватывают:
- a) модели complexity
- б) модели экосистем
- в) модели биосферы Земли
- 8. Мембрана содержит белков:
- а) меньше 50%
- б) около 70%
- в) более 90%
- 9. Актин-миозиновый комплекс требует энергетических затрат:
- а) не требует затрат
- б) участия кислот
- в) участия АТФ
- 10. Многовидовые системы в итоге имеют:
- а) три уровня иерархии
- б) иерархический вид
- в) кластерную структуру
- 11. Устойчивость системы с насыщением обусловлена:
- а) скорость прироста численности
- б) обратной связью
- в) видом функции f(x)
- 12. Complexity являются:
- а) дискретными системами
- б) кусочными системами
- в) непрерывными хаотическими системами
- 13. Проницаемость мембран зависит:
- а) от температуры Т
- б) от концентрации С(х)
- в) от парциального давления Р
- 14. Диффузия на мембранах требует:
- а) расхода миоглобина
- б) расхода АТФ
- в) расхода глюкозы
- 15. Классификация моделей базируется на:
- а) динамике процесса
- б) на базе данных
- в) на аппарате для моделирования
- 16. Нуклеотиды в молекуле ДНК соединяются следующим типов связей:
- а) Водородной
- б) Ковалентной
- в) Пептидной
- г) присутствуют все виды связей
- 17. Устойчивость видов зависит от:
- а) типов взаимодействия
- б) критерия Ляпунова
- в) конкуренции
- 18. Модель эпизоотии это:
- a) dx/dt=(a-bx)dx
- $\overrightarrow{6}$) dx/dt= \overrightarrow{A} x
- в) dx/dt=bxy, dy/dt=bxy
- 19. Хаотические процессы в природе это:
- а) проверка инвариантности мер
- б) расчет автокорреляции A(t)

- в) расчет констант Ляпунова
- 20.Сложные биосистемы:
- а) для которых нет прогноза будущего
- б) x(t) находится внутри КА
- в) нет повторений динамик

Контрольная работа (тестирование) по теме «Границы стохастики и возможности описания хаоса в медико-биологических системах»

Вариант 2

- 1. Кинематика уравнения базируется на:
- а) связи скорости dx/dt процесса и переменных
- б) на функции изменения x(t)
- в) на динамике роста x(t)
- 2. Методы системной биологии базируются на:
- а) понятии динамики x(t)
- б) на понятии системы
- в) на моделях
- 3. Классификация моделей базируется на:
- а) динамике процесса
- б) на базе данных
- в) на аппарате для моделирования
- 4. Простейшая динамическая модель это:
- а) модель популяционного взыра
- б) Ферхюльста-Пирла
- в) модель Галилея
- 5. Модель Ферхюльста-Пирла позволяет:
- а) описывать динамику роста
- б) находить max скорости прироста x(t)
- в) находить асимптоты роста
- 6. Модель Гаузе:
- а) описывает динамику видов
- б) насыщение популяций
- в) неустойчивость двух видов во времени
- 7. Модель Лотки-Вольтерра является:
- а) неустойчивой моделью
- б) устойчивой моделью
- в) неустойчивой из-за миграции
- 8. Модели в ККТБ описывают:
- а) иерархические системы
- б) взаимодействие компартментов
- в) предельные циклы
- 9.Метод Ляпунова позволяет:
- а) определить динамику процесса
- б) асимптоту процесса
- в) находить точки устойчивого состояния биосистемы
- 10. Неопределенность 2-го типа это:
- а) когда непрерывно изменяются статистические f(x)
- б) когда неопределенны начальные параметры x(t0)
- в) когда все неопределенно
- 11. Компартментно-кластерные системы охватывают:
- а) модели экосистем
- б) модели complexity
- в) модели биосферы Земли
- 12. Complexity являются:
- а) дискретными системами
- б) кусочными системами
- в) непрерывными хаотическими системами
- 13. Хаотические процессы в природе это:
- а) проверка инвариантности мер
- б) расчет автокорреляции A(t)
- в) расчет констант Ляпунова
- 14. Сложные биосистемы:
- а) для которых нет прогноза будущего
- б) x(t) находится внутри КА
- в) нет повторений динамик
- 15.Классификация моделей базируется на:
- а) динамике процесса
- б) на базе данных
- в) на аппарате для моделирования
- 16. Матрицы парных сравнений:
- а) обеспечивают реализацию стохастики в оценке СТТ

- б) реализует расчет f(x)
- в) реализует третью парадигму
- 17. Фазовое пространство в ККТБ может быть:
- а) двумерным
- б) многомерным
- в) иерархичным
- 18. Межкластерные взаимодействия описываются:
- а) компартментом
- б) кластером
- в) блочно-треугольной матрицей А
- 19.Понятие системы включает в себя:
- а) организацию (структуру) и взаимодействие
- б) совокупность элементов
- в) динамика системы зависит от ее элементов
- 20. Матрицы Аіј бывают:
- а) функциональными
- б) положительные (окончательно) и отрицательные
- в) блочные

Тема 6. Основные понятия и методы теории хаоса-самоорганизации (TXC).

Перечень вопросов для устного опроса:

- 1. Дайте определение понятия «фрактал»? Самоподобие фракталов.
- 2. Приведите примеры самоорганизации в фазовых переходах.
- 3. Дайте определение понятия «динамическая система».
- 4. Дайте определение понятию «самоорганизация».
- 5. В чем отличие самоорганизации от организации?
- 6. Что такое детерминированный хаос?
- 7. Каковы характерные свойства хаотических систем?
- 8. Что такое странный аттрактор?
- 9. Понятие гомеостаза. История термина.
- 10. Гомеостаз, его философские аспекты с позиций третьей парадигмы.
- 11. Гомеостаз в индивидуализированной медицине.
- 12. Условность стационарного состояния гомеостаза отдельного человека.
- 13. Методы идентификации эволюции гомеостаза человека при патологии.
- 14. Вектор состояния в персонифицированной медицине. Квазиаттракторы.
- 15. Философские основы индивидуализированной медицины с позиции теории гомеостаза.
- 16. Патология и выздоровление с позиции эволюции гомеостаза.

Тематика рефератов представлена в разделе 5.2.

Перечень вопросов для самостоятельной работы:

- 1. Примеры хаоса-самоорганизации в социологии.
- 2. Неопределенность социальных систем, их особенности и отличия от физических систем.
- 3. Понятие парадигмы в литературе, социологии, науке.
- 4. Динамика развития социумов с позиций 3-й парадигмы, роль ВУВов (оранжевые революции).
- 5.Значение парадигм для развития культуры и науки.
- 6. Дайте определение понятию «самоорганизация».
- 7. Основные задачи синергетики. Роль неопределенности.
- 8. Типы структур в синергетике.
- 9.Отличие самоорганизации от организации.
- 10. Понятие «устойчивость», типы устойчивости в стохастике и ТХС.
- 11. Эволюции систем с позиций ТХС.
- 12. Теорема о минимуме производства энтропии, ее границы применимости.
- 13. Что такое диссипативные структуры?
- 14. Принцип уровневого рассмотрения систем в синергетике.
- 15. Принцип подчинения в синергетике. Параметры порядка, джокеры.
- 16. Приведите примеры параметров порядка системы в теории ФСО.

Практическая работа: «Основные понятия и методы теории хаоса-самоорганизации (ТХС)».

Контрольная работа (тестирование) по теме «Основные понятия и методы теории хаоса-самоорганизации (ТХС)» Вариант 1

- 1. Статистическая теория описывает...
- а) непредсказуемое поведение систем;
- б) вероятностное поведение систем, состоящих из огромного числа элементов;
- в) строго детерминированное поведение систем от заданного начального состояния до бесконечности.
- 2. Адекватность математической модели и объекта это...
- а) правильность отображения в модели свойств объекта в той мере, которая необходима для достижения цели моделирования;
- б) Количество информации об объекте, получаемое в процессе моделирования;
- в) Объективность результата моделирования.
- 3. Критерий различия называют параметрическим если он:
- а) основан на конкретном типе распределения генеральной совокупности или использует параметры этой совокупности;
- б) не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности;
- в) позволяет выявить не только направленность изменений, но и их выраженность, т. е. он позволяет установить, насколько сдвиг

показателей в каком-то одном направлении является более интенсивным, чем в другом.

- 4. Выборки называют независимыми:
- а) если зафиксированные в эксперименте изменения не случайны и значимы на 1% уровне;
- б) если процедура эксперимента и полученные результаты измерения некоторого свойства, проведенные по одной выборке, оказывают некоторое влияние на другую;
- в) если процедура эксперимента и полученные результаты измерения некоторого свойства у испытуемых одной выборки не оказывают влияние на особенности протекания этого же эксперимента и результаты измерения этого же свойства у испытуемых другой выборки.
- 5. Непараметрический парный критерий Т Вилкоксона применяется для:
- а) оценки различий экспериментальных данных, полученных в двух разных условиях на одной и той же выборке испытуемых;
- б) оценки различий экспериментальных данных, полученных в одинаковых условиях на одной и той же выборке испытуемых;
- в) оценки различий экспериментальных данных, полученных в двух разных условиях на разных выборках испытуемых.
- 6. Несвязанные или независимые выборки образуются, когда в целях эксперимента для сравнения привлекаются данные:
- а) двух или более выборок, которые взяты из разных генеральных совокупностей;
- б) трех и более выборок, которые взяты из разных генеральных совокупностей;
- в) двух или более выборок, которые взяты из одной генеральных совокупностей.
- 7. Для оценки достоверности различий между несвязными (независимыми) выборками используется ряд непараметрических критериев. Одним из наиболее распространенных является критерий Манна-Уитни (U). Этот критерий применяют для:
- а) оценки различий по уровню выраженности какого-либо признака для трех независимых (несвязных) выборок. При этом выборки могут различаться по числу входящих в них испытуемых;
- б) оценки различий по уровню выраженности какого-либо признака для двух независимых (несвязных) выборок. При этом выборки могут различаться по числу входящих в них испытуемых;
- в) оценки различий по уровню выраженности какого-либо признака для трех независимых (несвязных) выборок. При этом выборки не могут различаться по числу входящих в них испытуемых.
- 8. Отметьте критерии, которые используются при параметрическом распределении значений:
- а) критерий Т Вилкоксона;
- б) F критерий Фишера, t критерий Стьюдента;
- в) критерий Манна-Уитни (U).
- 9. Корреляционный анализ это:
- а) это отношение среднего квадратического отклонения к средней арифметической, выраженное в процентах. Он применяется для сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим;
- б) статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную;
- в) статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми).
- 10. Непараметрическим аналогам стандартного коэффициента корреляции Пирсона является: а) корреляциия Спирмена R;
- б) коэффициент Гамма;
- в) корреляции тау Кендалла;
- г) все варианты верны.
- 11. Отметьте уравнение, которое описывает процесс запоминания нелогической информации (механическое или непосредственное запоминание) и основано на аппроксимации кривой Г. Эббингауза и имеет вид:
- a) dI/dt = -aI;
- б) S=klnW;
- B) Dm/dt=-DS(dC/dx).
- 12. Укажите уравнение расчета объема m -мерного параллелепипеда:

a)
$$\Delta V_g = V_g^2 - V_g^1$$
;

6)
$$V_g = \prod_{i=1}^{m} D_i$$
;

B)
$$(\Delta V_g/V_g^1)*100\%$$
.

13. Расчет изменения объемов квазиаттракторов в абсолютных и относительных величинах, которые являются интегративными показателями степени изменения уровня флуктуации вектора состояния психофизиологических функций в фазовом пространстве состояний производится по формулам

a)
$$\Delta V_g = V_g^2 - V_g^1$$
 и $(\Delta V_g / V_g^1) * 100\%$;

6)
$$(\Delta V_g / V_g^1) * 100%$$
 и $r = \sqrt{\sum_{i=1}^m (x_{iC} - x_{iS})^2}$;

в)
$$\Delta V_g = V_g^2 - V_g^1$$
и $X_{ij}^C = x_{i(min)} + D_i^k/2$.

14. Расчет показателя асимметрии производится по формуле:

a)
$$r = \sqrt{\sum_{i=1}^{m} (x_{iC} - x_{iS})^2}$$
;

6)
$$x_{iC} = \frac{(x_{imax} + x_{imin})}{2};$$

- B) $(\Delta V_{\sigma}/V_{\sigma}^{1})*100\%$.
- 15. Ведущее место в наборе отличий (и противоречий) между детерминистско-стохастической парадигмой и теорией хаоса-самоорганизации является:
- а) отсутствие возможности произвольного повторения начальных значений x(t0) вектора состояния системы $x=(x1,x2,...,xm)^T$ (а тогда нет задачи Коши) и особый хаос систем третьего типа, который не является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы;
- б) отсутствие возможности непроизвольного повторения начальных значений х(t0) вектора состояния системы
- x=(x1, x2,...,xm)^т (а тогда нет задачи Коши) и особый хаос систем третьего типа, который не является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы ДСП;
- в) отсутствие возможности произвольного повторения начальных значений x(t0) вектора состояния системы $x=(x1, x2, ..., xm)^T$ и особый хаос систем третьего типа, который является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы.

Контрольная работа (тестирование) по теме «Основные понятия и методы теории хаоса-самоорганизации (ТХС)» Вариант 2

- 1. В каком термине заложена комбинация двух противоречий: «подобный не есть одинаковый» и «состояние не обязательно является неподвижным»:
- а) эмерджентность;
- б) гомеостаз;
- в) телеологичность.
- 2. Принципиальная непредсказуемость и неповторимость динамики поведения сложных динамических систем обусловлена особыми свойствами сложных биосистем, которые сейчас определяются как системы:
- а) первого типа;
- б) второго типа;
- в) третьего типа.
- 3. Первые попытки ввести некоторые понятия в теории comlexity были выполнены:
- a) W. Weaver;
- б) A. Hill;
- в) H. Haken.
- 4. Когнитивная деятельность, и психические, психофизиологические функции человека могут быть во многих случаях описаны в рамках компартментно-кластерных простейших математических моделей (т.е. в рамках компартментно-кластерного подхода (ККП)) вида:
- a) dx/dt=-Ax+ud.
- δ) dA/dt=r·A0·e^{-rt}
- B) dx/dt=Ax-Bxy
- 5. Формула для идентификации стохастического центра квазиаттрактора:

a)
$$X_{ki}^{S} = \sum_{j=1}^{n} x_{kij} / n$$

a)
$$X_{ki}^{S} = \sum_{j=1}^{n} x_{kij} / n$$

6) $z_{kf} = \sqrt{\sum_{i=1}^{m} (x_{ic}^{k} - x_{ic}^{f})^{2}}$

B)
$$x_{is}^{k} = \sum_{j=1}^{n} \frac{x_{ij}^{k}}{m}$$

- 6. Укажите количество принципиальных различий в организации систем третьего типа:
- a) 3
- б) 5
- в) 7
- 7. Первые попытки математического и физического описания синергизма в биосистемах предприняли:
- а) Г. Хакен;
- б) И.Р. Пригожин;
- в) В. Эбелинг.
- 8. Компартментно кластерная теория биосистем основывается на 8-ми базовых постулатах (положениях), которые могут быть применимы:
- а) к психофизиологическим системам;
- б) к биомеханическим системам;
- в) ко всем биологическим динамическим системам.
- 9. Синергические взаимоотношения между блоками (компартментами) могут описываться неотрицательными элементами матриц А компартментных моделей БДС, которые идентифицируются в рамках:
- а) бихевиористического подхода;
- б) синергетического подхода;
- в) детерминистского подхода.
- 10. В реальной ситуации при использовании компартментно-кластерного подхода и идентификации матриц А моделей БДС всегда (или почти всегда) возникают:
- а) отрицательные элементы аіј для некоторых і и ј;
- б) положительные элементы аіј для некоторых і и ј;
- в) отрицательные элементы аіј для всех і и ј.
- 11. Разработанная Сургутской и Тульской научной школой автоматизированная процедура с помощью ЭВМ позволяет определять

интервалы устойчивости биологических динамических систем:

- а) За счет изменения параметров внешних сигналов;
- б) За счет "дребезга" величин выходных сигналов;
- в) За счет марковских параметров, исследуемых БДС.
- 12. Тоническая моторная система выступает в комплексе с парасимпатическим отделом вегетативной системы, а фазическая моторная система образует комплекс с симпатическим отделом вегетативной системы. Обе эти системы образуют иерархическую систему, которая называется:
- а) Фазатон мозга.
- б) Фазовый портрет;
- в) Фазичекий комплекс.
- 13. Реальные объекты не могут мгновенно изменять свое состояние, поэтому вместо статических моделей для их исследования используют динамические модели, которые описываются
- а) Дифференциальными уравнениями;
- б) Разностными уравнениями;
- в) Нелинейными уравнениями
- 14. Говоря о внутренней устойчивости, рассматривают не только выход, но и все переменные, описывающие состояние системы. В математической теории систем вектор состояния обозначают через x(t), а уравнение движения системы записывают в виде:

a)
$$x(t) = x_0 + x_1 t + x_2 t^2 + ... + x_{\nu-1} t^{\nu-1}$$

6) $\frac{dx(t)}{dt} = f(x, t)$
B) $\frac{dy(t)}{dt} = k \cdot x(t)$

- 15. Основным критерием оценки устойчивости нелинейной системы является анализ:
- а) Если при достаточно малых возмущающих воздействиях динамическая система возвращается в исходное состояние (в точку покоя);
- б) Если при произвольном, но ограниченном начальном возмущении и различных видах нелинейности системы система возвращается в исходное состояние;
- в) все движения x(t) ,которые начинаются близко от положения равновесия x^* , при всех t остаются в некоторой окрестности x^*

Тема 7. Эволюция понятия гомеостаза. От детерминизма к стохастике и хаосу-самоорганизации Вопросы для устного опроса:

- 1. Почему гомеостатичные системы (СТТ) не являются объектом современной науки?
- 2. Чем закончилась дискуссия между complexity и синергетикой?
- 3. Что мы все-таки изучаем в самом гомеостазе (в живых системах)?
- 4. Если мы не можем дать определение системам третьего типа, то что такое гомеостаз?
- 5. Дать определение 5-ти принципам организации систем третьего типа.

Практическая работа: «Эволюция понятия гомеостаза. От детерминизма к стохастике и хаосу-самоорганизации».

Задания для самостоятельной работы:

- 1. Кинематика в случае детерминистского и стохастического описания движения
- 2. Аналог принципа Гейзенберга в теории хаоса-самоорганизации: неопределенности 1-го и 2-го типа в биологии и медицине
- 3. На примерах объясните неопределенности 1-го и 2-го типов при изучении сложных биосистем.
- 4. Патология и выздоровление с позиции эволюции гомеостаза.
- 5. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи?
- 6. Биофизические модели патологического и постурального тремора.

Тематика рефератов представлена в разделе 5.2.

Тема 8. Гипотеза Н.А. Бернштейна о «повторении без повторений» и complexity W. Weaver.

Перечень вопросов для устного опроса:

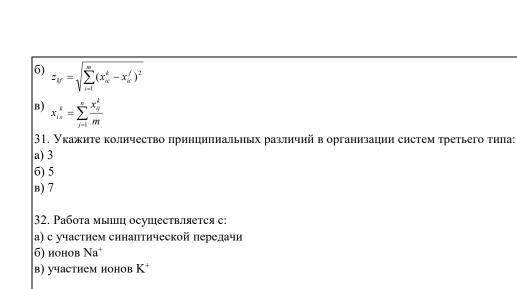
- 1. Свойства систем 1-го и 2-го типа по W. Weaver
- 2. Почему термодинамика неравновесных систем не может описывать живые системы?
- 3. Опишите каждый уровень построения движения по Н.А. Бернштейну (руброспинальный (А), талямопаллидарный (В),
- 4. пирамидностриальный (С), кортикальный (D), идеаторный уровня (Е)).
- 5. Исследования Н.А. Бернштейна, W. Weaver и I.R. Prigogine, как первые попытки изучения хаоса живых систем
- 6. Понятие произвольности и непроизвольности в биомеханике.
- 7. Эффект «повторение без повторений» Н.А. Бернштейна в оценке произвольных и непроизвольных движений.
- 8. Понятие саногенеза и его описание в фазовом пространстве состояний.
- 9. Теоремы К. Геделя и аксиоматика третьей парадигмы или почему третья парадигма отличается от других парадигм естествознания?

Тематика рефератов представлена в разделе 5.2.

Перечень вопросов для самостоятельной работы:

- 1. Нервно-мышечная система (НМС) как источник самоорганизующегося хаоса в организации движений (по данным электромиограмм ЭМГ)
- 2. Общие представления о гомеостазе и эволюции. Энтропия и теорема Пригожина-Гленсдорфа в ТХС
- 3. Эволюция гомеостаза в восстановительной медицине
- 4. Компартментно-кластерная теория биосистем (ККТБ) в ТХС
- 5. Модели эволюции в изучении нервных болезней
- 6. Динамика изменения параметров биоэлектрической активности мышц в ответ на разное статическое усилие.

- 7. Анализ миограмм с позиций стохастики и теории хаоса-самоорганизации.
- 8. Биофизические модели патологического и постурального тремора.
- 9. Стохастическая обработка результатов динамики биомеханических параметров человек.
- 10. Возможности стохастики и теории хаоса в обработке миограмм.


Практическая работа: «Гипотеза Н.А. Бернштейна о «повторении без повторений» и complexity W. Weaver».

Контрольная работа проводиться в форме тестирования.

- 1. Статистическая теория описывает...
- а) непредсказуемое поведение систем;
- б) вероятностное поведение систем, состоящих из огромного числа элементов;
- в) строго детерминированное поведение систем от заданного начального состояния до бесконечности.
- 2. Адекватность математической модели и объекта это...
- а) правильность отображения в модели свойств объекта в той мере, которая необходима для достижения цели моделирования;
- б) Количество информации об объекте, получаемое в процессе моделирования;
- в) Объективность результата моделирования.
- 3. Критерий различия называют параметрическим если он:
- а) основан на конкретном типе распределения генеральной совокупности или использует параметры этой совокупности;
- б) не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности;
- в) позволяет выявить не только направленность изменений, но и их выраженность, т. е. он позволяет установить, насколько сдвиг показателей в каком-то одном направлении является более интенсивным, чем в другом.
- 4. Выборки называют независимыми:
- а) если зафиксированные в эксперименте изменения не случайны и значимы на 1% уровне;
- б) если процедура эксперимента и полученные результаты измерения некоторого свойства, проведенные по одной выборке, оказывают некоторое влияние на другую;
- в) если процедура эксперимента и полученные результаты измерения некоторого свойства у испытуемых одной выборки не оказывают влияние на особенности протекания этого же эксперимента и результаты измерения этого же свойства у испытуемых другой выборки.
- 5. Непараметрический парный критерий Т Вилкоксона применяется для:
- а) оценки различий экспериментальных данных, полученных в двух разных условиях на одной и той же выборке испытуемых;
- б) оценки различий экспериментальных данных, полученных в одинаковых условиях на одной и той же выборке испытуемых;
- в) оценки различий экспериментальных данных, полученных в двух разных условиях на разных выборках испытуемых.
- 6. Несвязанные или независимые выборки образуются, когда в целях эксперимента для сравнения привлекаются данные:
- а) двух или более выборок, которые взяты из разных генеральных совокупностей;
- б) трех и более выборок, которые взяты из разных генеральных совокупностей;
- в) двух или более выборок, которые взяты из одной генеральных совокупностей.
- 7. Для оценки достоверности различий между несвязными (независимыми) выборками используется ряд непараметрических критериев. Одним из наиболее распространенных является критерий Манна-Уитни (U). Этот критерий применяют для:
- а) оценки различий по уровню выраженности какого-либо признака для трех независимых (несвязных) выборок. При этом выборки могут различаться по числу входящих в них испытуемых;
- б) оценки различий по уровню выраженности какого-либо признака для двух независимых (несвязных) выборок. При этом выборки могут различаться по числу входящих в них испытуемых;
- в) оценки различий по уровню выраженности какого-либо признака для трех независимых (несвязных) выборок. При этом выборки не могут различаться по числу входящих в них испытуемых.
- 8. Отметьте критерии, которые используются при параметрическом распределении значений:
- а) критерий Т Вилкоксона;
- б) F критерий Фишера, t критерий Стьюдента;
- в) критерий Манна-Уитни (U).
- 9. Корреляционный анализ это:
- а) это отношение среднего квадратического отклонения к средней арифметической, выраженное в процентах. Он применяется для сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим;
- б) статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную;
- в) статистическая взаимосвязь двух или более случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми).
- 10. Непараметрическим аналогам стандартного коэффициента корреляции Пирсона является:
- а) корреляциия Спирмена R;
- б) коэффициент Гамма;
- в) корреляции тау Кендалла;
- г) все варианты верны.

- 11. При малых итерациях нейро-ЭВМ не может идентифицировать:
- а) значимость параметров координат вектора состояний организма человека в условиях широтных перемещений;
- б) значимые признаки параметров психофизиологических функций человека до и после воздействия стресса;
- в) распознавание диагностических признаков при проведении сравнений при разных размерностях фазового пространства различных групп испытуемых.
- г) при малых итерациях нейросеть не может реализовать все перечисленные условия;
- 12. Какая форма математической модели отображает предписание последовательности некоторой системы операций над исходными данными с целью получения результата:
- а) Аналитическая;
- б) Графическая;
- в) Алгоритмическа;
- 13. Имитационное моделирование ...
- а) Воспроизводит функционирование объекта в пространстве и времени;
- б) Моделирование, в котором реализуется модель, производящая процесс функционирования системы во времени, а также имитируются элементарные явления, составляющие процесс;
- в) Моделирование, воспроизводящее только физические процессы.
- 14. Модель детерминированная ...
- а) Матрица, детерминант которой равен единице;
- б) Объективная закономерная взаимосвязь и причинная взаимообусловленность событий. В модели не допускаются случайные события:
- в) Модель, в которой все события, в том числе, случайные ранжированы по значимости.
- 15. Первые попытки математического и физического описания синергизма в биосистемах предприняли:
- а) Г. Хакен;
- б) И.Р. Пригожин;
- в) В. Эбелинг.
- 16. Компартментно кластерная теория биосистем основывается на 8-ми базовых постулатах (положениях), которые могут быть применимы:
- а) к психофизиологическим системам;
- б) к биомеханическим системам;
- в) ко всем биологическим динамическим системам.
- 17. Синергические взаимоотношения между блоками (компартментами) могут описываться неотрицательными элементами матриц А компартментных моделей БДС, которые идентифицируются в рамках:
- а) бихевиористического подхода;
- б) синергетического подхода;
- в) детерминистского подхода.
- 18. В реальной ситуации при использовании компартментно-кластерного подхода и идентификации матриц А моделей БДС всегда (или почти всегда) возникают:
- а) отрицательные элементы аіі для некоторых і и і;
- б) положительные элементы а; для некоторых і и ј;
- в) отрицательные элементы аіј для всех і и ј.
- 19. Разработанная Сургутской и Тульской научной школой автоматизированная процедура с помощью ЭВМ позволяет определять интервалы устойчивости биологических динамических систем:
- а) За счет изменения параметров внешних сигналов;
- б) За счет "дребезга" величин выходных сигналов;
- в) За счет марковских параметров, исследуемых БДС.
- 20. Тоническая моторная система выступает в комплексе с парасимпатическим отделом вегетативной системы, а фазическая моторная система образует комплекс с симпатическим отделом вегетативной системы. Обе эти системы образуют иерархическую систему, которая называется:
- а) Фазатон мозга.
- б) Фазовый портрет;
- в) Фазичекий комплекс.
- 21. Реальные объекты не могут мгновенно изменять свое состояние, поэтому вместо статических моделей для их исследования используют динамические модели, которые описываются
- а) Дифференциальными уравнениями;

- б) Разностными уравнениями;
- в) Нелинейными уравнениями
- 22. Основным критерием оценки устойчивости нелинейной системы является анализ:
- а) Если при достаточно малых возмущающих воздействиях динамическая система возвращается в исходное состояние (в точку покоя);
- б) Если при произвольном, но ограниченном начальном возмущении и различных видах нелинейности системы система возвращается в исходное состояние;
- в) все движения x(t), которые начинаются близко от положения равновесия x^* , при всех t остаются в некоторой окрестности x^*
- 23. Укажите уравнение расчета объема мерного параллелепипеда:
- a) $\Delta V_{\varrho} = V_{\varrho}^2 V_{\varrho}^1$
- 6) $V_g = \prod_{i=1}^m D_i$
- B) $(\Delta V_{o}/V_{o}^{1})*100\%$
- 24. Расчет изменения объемов псевдоаттракторов в абсолютных и относительных величинах, которые являются интегративными показателями степени изменения уровня флуктуации вектора состояния психофизиологических функций в фазовом пространстве состояний производится по формулам:
- a) $\Delta V_g = V_g^2 V_g^1$ H $(\Delta V_g / V_g^1) * 100\%$
- 6) $(\Delta V_g / V_g^1) * 100\%$ и $r = \sqrt{\sum_{i=1}^{m} (x_{iC} x_{iS})^2}$
- B) $\Delta V_g = V_g^2 V_g^1$ M $X_{ij}^c = x_{i(min)} + D_i^k/2$
- 25. Расчет показателя асимметрии производится по формуле:
- a) $r = \sqrt{\sum_{i=1}^{m} (x_{iC} x_{iS})^2}$
- $(5) x_{iC} = \frac{(x_{imax} + x_{imin})}{2}$
- B) $(\Delta V_{o}/V_{o}^{1})*100\%$
- 26. Ведущее место в наборе отличий (и противоречий) между детерминистско-стохастической парадигмой и теорией хао-са-самоорганизации является:
- а) отсутствие возможности произвольного повторения начальных значений $x(t_0)$ вектора состояния системы $x=(x_1, x_2, ..., x_m)^T$ (а тогда нет задачи Коши) и особый хаос систем третьего типа, который не является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы;
- б) отсутствие возможности непроизвольного повторения начальных значений $x(t_0)$ вектора состояния системы $x=(x_1, x_2, ..., x_m)^T$ (а тогда нет задачи Коши) и особый хаос систем третьего типа, который не является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы ДСП;
- в) отсутствие возможности произвольного повторения начальных значений $x(t_0)$ вектора состояния системы $x=(x_1, x_2,...,x_m)^T$ и особый хаос систем третьего типа, который является детерминированным хаосом, а значит и систем третьего типа не объект детерминистско-стохастической парадигмы.
- 27. В каком термине заложена комбинация двух противоречий: «подобный не есть одинаковый» и «состояние не обязательно является неподвижным»:
- а) эмерджентность;
- б) гомеостаз;
- в) телеологичность.
- 28. Принципиальная непредсказуемость и неповторимость динамики поведения сложных динамических систем обусловлена особыми свойствами сложных биосистем, которые сейчас определяются как системы:
- а) первого типа;
- б) второго типа;
- в) третьего типа.
- 29. Первые попытки ввести некоторые понятия в теории comlexity были выполнены:
- a) W. Weaver;
- б) A. Hill;
- в) H. Haken.
- 30. Формула для идентификации стохастического центра псевдоаттрактора:
- (a) $X_{ki}^{S} = \sum_{i=1}^{n} x_{kij} / n$

33. Потенциал покоя возникает за счет:

34. Потенциал действия возникает из-за:

в) нарушения проницаемости для Na⁺

36. Мембрана содержит белков:

38. Проницаемость мембран зависит:

39. Диффузия на мембранах требует:

40. Уравнения Ходжкина-Хаксли: а) описывают диффузию на мембранах

Разделы и методы биофизики.

нятие фазовой плоскости.

б) описывают генерацию ПД в) динамику K^+ и Na^+ на мембранах

3.

4.

кинетики.

35. Уравнение потенциала на мембране включает:

37. Актин-миозиновый комплекс требует энергетических затрат:

Вопросы для подготовки к кандидатскому экзамену по дисциплине:

1. Предмет биофизики, ее место в естествознании.

Проведение промежуточной аттестации по дисциплине

Общая характеристика реакций в биологических системах. Описание динамики биологических процессов на языке химической

Методы качественной теории дифференциальных уравнений в анализе динамических свойств биологических процессов. По-

Понятие математической модели. Задачи и возможности математического моделирования в биологии.

б) избирательной проницаемости в) облегченной диффузии

а) диффузии

а) транспорта К⁺б) градиента Na⁺

a) E=RT/ZF*ln(a₁/a₂)
 б) E=Z₀*lna₁*a₂
 в) E=f(c₁,c₂)

а) меньше 50%б) около 70%в) более 90%

а) не требует затратб) участия кислотв) участия АТФ

а) от температуры Тб) от концентрации C(x)в) от парциального давления Р

а) расхода миоглобинаб) расхода АТФв) расхода глюкозы

- 6. Стационарные состояния биологических систем. Устойчивость стационарных состояний.
- 7. Кинетика ферментативных реакций. Особенности механизма ферментативных процессов.
- 8. Стационарная кинетика ферментативных реакций. Уравнение Михаэлиса-Ментен. Влияние различных факторов на кинетику ферментативных реакций (ингибиторы, активаторы, рН среды, ионы металлов).
- 9. Модели экологических систем.
- 10. Классификация термодинамических систем. Первый закон термодинамики и его применение к биологическим системам.
- 11. Второй закон термодинамики в биологии. Понятие термодинамического равновесия. Расчеты стандартных энергий реакций в биологических системах.
- 12. Изменение энтропии в открытых системах. Термодинамические условия осуществления стационарного состояния.
- 13. Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.
- 14. Стационарное состояние и условие минимума скорости прироста энтропии. Теорема Пригожина.
- 15. Общие понятия стабильности конфигурации молекул, энергия связи. Макромолекула как основа организации биоструктур. Своеобразие макромолекул как физического объекта.
- 16. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах. Переходы спираль-клубок.
- 17. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибриллярных и глобулярных белков.
- 18. Динамическая структура глобулярных белков; конформационная подвижность.
- 19. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка, ЯМР высокого разрешения, импульсные методы ЯМР.
- 20. Мембрана как универсальный компонент биологических систем. Структурная организация мембран. Липиды.
- 21. Характеристика мембранных белков. Вода как составной элемент биомембран.
- 22. Модельные мембранные системы. Монослойные мембраны на границе раздела фаз. Бислойные мембраны. Протеолипосомы.
- 23. Физико-химические механизмы стабилизации мембран. Фазовые переходы в мембранных системах. Вращательная, трансляционная подвижность фосфолипидов, флип-флоп переходы. Подвижность мембранных белков.

Белок-липидное взаимодействие в мембранах.

- 24. Поверхностный заряд мембранных систем; происхождение дзета-потенциала и характеристика основных факторов, определяющих его величину.
- 25. Пассивные электрические явления в биоструктурах. Типы поляризации.
- 26. Проблема транспорта веществ через биомембраны. Проницаемость биомембран. Движущие силы процесса переноса вещества через мембрану.
- 27. Электрохимический потенциал. Активный и пассивный транспорт. Термодинамические уравнения и критерии процессов пассивного и активного транспорта. Уравнения диффузии, константа проницаемости.
- 28. Транспорт неэлектролитов. Связь проницаемости мембран с растворимостью проникающих веществ в липидах. Простая диффузия низкомолекулярных веществ. Ограниченная диффузия.
- 29. Проницаемость биологических мембран для воды.
- 30. Облегченная диффузия. Транспорт сахаров и аминокислот через биологическую мембрану с участием переносчиков. Пинопитоз.
- Проницаемость биологических мембран для ионов. Избирательность. Понятие о полупроницаемости, селективности и неспецифичности биомембран. Роль переносчиков в проницаемости биологических мембран для ионов. Примеры (валиноимицин, грамицидин).
- 32. Причины возникновения биопотенциалов. Концентрационные, диффузионные, фазовые и мембранные потенциалы.
- 33. Равновесный электрохимический потенциал. Потенциал покоя и его связь с распределением ионов.
- 34. Роль калия в генерации потенциала покоя. Гипотеза о натриевом насосе. Уравнение поля Гольдмана.
- 35. Мембранная теория Ходжкина-Хаксли-Катца. Экспериментальные доказательства наличия транспорта ионов натрия. Транспортные АТФазы. Модели параллельно функционирующих пассивных и активных каналов транспорта ионов через мембрану.
- 36. Потенциал действия. Роль натрия и калия в генерации потенциала действия в нервах и мышцах. Роль кальция и хлорав генерации потенциала действия у других объектов.
- 37. Связь транспорта ионов и процессов переноса электрона в хлоропластах и митохондриях.
- 38. Протеолипосомы как модель для изучения механизма энергетического сопряжения. Бактериородопсин какмо-лекулярный фотоэлектрический генератор. Физические аспекты и модели энергетического сопряжения.
- 39. Основные типы сократительных и подвижных систем. Молекулярные механизмы подвижности белковыхком-понентов сократительного аппарата мышц.
- 40. Функционирование поперечнополосатой мышцы позвоночных. Модели Хаксли, Дещеревского, Хилла.
- 41. Молекулярные механизмы немышечной подвижности.
- 42. Сенсорная рецепция. Проблема сопряжения между первичным взаимодействием внешнего стимула с рецепторнымсубстратом и генерацией рецепторного (генераторного) потенциала.
- 43. Общие представления о структуре и функции рецепторных клеток. Место рецепторных процессов в работе сенсорныхсистем.
- 44. Фоторецепция. Строение зрительной клетки. Молекулярная организация фоторецепторной мембраны; динамика молекулы зрительного пигмента в мембране. Зрительные пигменты: классификация, строение, спектральные характеристики; Фотохимические превращения родопсина. Ранние и поздние рецепторные потенциалы. Механизмыгенерации позднего рецепторного потенциала.
- 45. Механорецепция. Рецепторные окончания кожи, проприорецепторы. Механорецепторы органов чувств: органы боковой линии, вестибулярный аппарат, кортиев орган внутреннего уха. Общие представления о работе органа слуха. Современные представления о механизмах механорецепции; генераторный потенциал. Электрорецепция.
- 46. Общая характеристика фотохимических реакций и их типы.

- 47. Основные стадии фотобиологического процесса: возбуждение фоторецептора, миграция энергии возбуждения, первичный фотохимический акт, сопряжение с ферментативными стадиями, физиологический эффект. Основы молекулярной организации фоторецептора. Люминесценция биологически важных молекул.
- 48. Процессы растрат энергии и фотохимический акт. Фотохимические процессы, квантовый выход и сечение фотореакции.
- 49. Кинетика фотобиологических процессов и зависимость от интенсивности света. Фотосенсибилизация.
- 50. Фотосинтез. Спектр действия, поглощение и миграция энергии в фотосинтетической единице. Механизмы разделениязарядов в реакционном центре. Генерация потенциалов. Роль, мембранных структур. Электронтранспортная цепъ и две фотохимические реакции.
- 51. Особенности и механизмы фотоэнергетических реакций бактериородопсина и зрительного пигмента родопсина.
- 52. Понятие фазатона мозга и движение квазиаттрактора ВСОЧ в фазовом пространстве с возрастом человека.
- 53. Описать методику расчета объема квазиаттрактора в фазовом пространстве состояний.
- 54. Оценка коэффициента асинергизма χ с помощью матрицы A в рамках компартментно-кластерного подхода.
- 55. Свойства систем 1-го и 2-го типа по W. Weaver
- 56. Почему термодинамика неравновесных систем не может описывать живые системы?
- 57. Опишите каждый уровень построения движения по Н.А. Бернштейну (руброспинальный (A), талямопаллидарный (B),пирамидностриальный (C), кортикальный (D), идеаторный уровня (E)).
- 58. Понятие системы 3-го типа в работах И.Р. Пригожина ("The die is not cast" и «Философия нестабильности»).
- 59. Понятие организованной сложности по W. Weaver.
- 60. Условность стационарного состояния гомеостаза.
- 61. Методы идентификации эволюции гомеостаза.
- 62. Гомеостазис У.Р. Эшби.
- 63. Неопределенности 2-го типа в организации якобы произвольных движений (на примере теппинга).
- 64. Расчёт функций распределения f(x) для тремора и теппинга различия по k.
- 65. Ограниченность стохастического подхода в описании любых движений.
- 66. Динамики A(t) автокорреляционных функций и AЧX (амплитудно-частотных характеристик) для тремора и теппинга, оценка произвольных и непроизвольных движений в рамках стохастики.
- 67. Отсутствие детерминированного хаоса в динамике тремора и теппинга.
- 68. Аналог принципа неопределенности Гейзенберга для биосистем complexity.
- 69. Кинематика в случае детерминистского и стохастического описания движения
- 70. Патология и выздоровление с позиции эволюции гомеостаза.
- 71. Современная трактовка гомеостаза в рамках третьей парадигмы.
- 72. Идентификация параметров порядка как основа системного синтеза.
- Примеры неопределенностей 1-го типа в оценке произвольных и непроизвольных движений. Разрешениенеопределенностей 1-го типа в оценке произвольных и непроизвольных движений.
- 74. Понятие сложных систем, неопределенности и непредсказуемости
- 75. Кинематика биосистем как эволюция основа современной биофизики и аналог механики Ньютона.
- 76. Биофизические модели патологического и постурального тремора.
- 77. Неопределенности 1-го и 2-го типов при изучении сложных биосистем.
- 78. Невозможность использования стохастического подхода в описании биомеханических систем.
- 79. Аналог принципа Гейзенберга в теории хаоса-самоорганизации: неопределенности 1-го и 2-го типа в биологии имелипине
- 80. Изменение энтропии в открытых системах. Постулаты Пригожина.
- 81. Понятие о системах третьего типа
- 82. Почему стохастика неприменима к системам третьего типа?
- 83. Типы общества в представлениях А. Тойнби.
- 84. Динамика развития социумов с позиций 3-й парадигмы.
- 85. Примеры парадигм, их значение для развития культуры и науки.

5.2. Темы письменных работ

Тематика рефератов по теме 6:

- 1. Детерминированный хаос и основные принципы его идентификации в ТХС.
- 2. Свойства хаотических систем в рамках ТХС. CTT-complexity.
- 3. Что такое странный аттрактор? Его признаки в теории Ляпунова.
- 4. Самоподобие фракталов, размерность фрактала.
- 5. Механизмы рождения хаоса в системах. Нейросети мозга.
- 6. Самоорганизация в сильно неравновесных условиях и нейросетях мозга 1-й тип неопределенности в ТХС.
- 7. Парадигмы в науке и закон смены парадигм Т. Куна в философии.
- 8. Теория хаоса-самоорганизации (ТХС) фундамент третьей парадигмы в социологии.
- 9. Неопределенность и самоорганизация в ТХС.
- 10. Парадигмы в науке, третья парадигма.

Тематика рефератов по теме 7:

- 1. Детерминированный хаоса в биосистемах.
- 2. Хаос систем третьего типа (СТТ).
- 3. Детерминированный хаос (ДХ) Лоренца-Арнольда.
- Признаки детерминированного хаоса (ДХ) и их отсутствие у систем третьего типа (СТТ).
- 5. Особенности хаоса систем третьего типа (СТТ) с позиций теории хаоса-самооорганизации.

Тематика рефератов по теме 8:

1. Биомеханика - мостик между физикой и теорией хаоса - самоорганизации

- 2. Биомеханика произвольных движений
- 3. Реакции биосистем на внешние возмущающие воздействия. Примеры.
- 4. Новые методы изучения устойчивости БДС.
- 5. Идентификация патологии в ФПС методами квазиаттракторов.
- 6. Идентификация скорости выздоровления пациента с позиций кибернетики.
- 7. Заболевания как эволюция организма в ФПС.
- 8. Изменения объёма и координат центра квазиаттракторора в ФПС при развитии патологии.
- 9. Расчёт матриц парных сравнений выборок теппинграмм.
- 10. Сравнение матриц треморограмм и теппинграмм.
- 11. Отличие произвольных движений от непроизвольности.
- 12. Кинематика биосистем как эволюция: стационарные режимы и скорость движения сложных систем— complexity
- 13. Хаотическая оценка динамики тремора в условиях физической нагрузки
- 14. Термодинамический и хаотический подходы в оценке параметров тремора при охлаждении испытуемых.

		6.1. Рекомендуемая литература				
	Авторы, составители	Заглавие	Издательство, год	Кол-во		
Л1.1	Пригожин И.Р., Стенгерс И.	Порядок из хаоса: новый диалог человека с природой	М.: КомКнига, 2005	9		
Л1.2	Еськов В. М., Хадарцев А.А., Еськов В. В.	Третья парадигма: Монография	Тула: Издательство ТулГУ, 2016	1		
Л1.3	Лашко, С.И., Саяпина, И.А.	Постнеклассическая парадигманауки и современность: Монография	Краснодар: Южный институт менеджмента, 2007, http://www.iprbookshop.ru/8440.html	1		
Л1.4	Ризниченко Г.Ю.	Математическое моделирование биоло гических процессов. Модели в биофизи ке и экологии		1		
Л1.5	Пригожин И.	От существующего к возникающему: время исложность в физических науках	М.: КомКнига, 2006	5		
Л1.6	Пригожин И., Кондепуди Д.	Современная термодинамика. От тепловых двигателей до диссипативных структур: Учебное пособие		11		
Л1.7	Эбелинг В., Файстель Р.	Хаос и космос: синергетика эволюции	Москва, Ижевск: Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019, http://www.iprbook shop.ru/92023.html	1		
		6.2. Электронно-библиотечные системь	J			
Э1	Электронно-библиотечная сис	тема Znanium http://new.znanium.ru				
Э2	Электронно-библиотечная сис	тема «Лань» http://e.lanbook.com				
Э3	Электронно-библиотечная сис	тема IPR SMART (IPRbooks) http://www.iprb	oookshop.ru			
Э4	Электронно-библиотечная система «Юрайт» https://urait.ru					
	6.3. I	Інформационные, информационно-справо	очные системы			
6.3.1	Гарант – справочно-правовая	система по законодательству Российской Фе	дерации http://www.garant.ru			
6.3.2	КонсультантПлюс – справочн	о-правовая система http://www.consultant.ru				
	1 -	6.4. Профессиональные базы данн	ых			
3 локал	ьной cemu http://lib.surgu.ru/ru/j	pages/resursi/bd/lan				
6.4.1.	Электронная библиотека СурІ	Ty https://elib.surgu.ru				
6.4.2.						
6.4.3.	1 1					
6.4.4.						
6.4.5.	Национальная электронная би	блиотека (НЭБ) нэб.рф				
6.4.6.	* ' ' * *					
6.4.7.	Springer Nature https://link.sprin					
6.4.8.	Полнотекстовая коллекция журналов PAH https://journals.rcsi.science					
6.4.9.	Wiley Journals Database https://					

В свободном доступе сети Интернет		
6.4.10.	База данных ВИНИТИ PAH http://www.viniti.ru	
6.4.11.	Единое окно доступа к образовательным ресурсам - информационная система http://window.edu.ru	
6.4.12.	КиберЛенинка - научная электронная библиотека http://cyberleninka.ru	
6.4.13.	Электронные коллекции на портале Президентской библиотеки им. Б. Н. Ельцина http://www.prlib.ru/collections	
6.4.14.	Российская национальная библиотека https://primo.nlr.ru/primo-explore/collectionDiscovery?vid=07NLR_VU1⟨=ru_RU	
6.4.15.	Elsevier - Open Archive https://www.elsevier.com/about/open-science/open-access/open-archive	
6.4.16.	SpringerOpen http://www.springeropen.com	
6.4.17.	Directory of Open Access Journals https://doaj.org	
6.4.18.	Multidisciplinary Digital Publishing Institute (Basel, Switzerland) http://www.mdpi.com	

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Учебные аудитории Университета для проведения занятий лекционного типа, занятий семинарного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащены: комплект специализированной учебной мебели, маркерная (меловая) доска, комплект переносного мультимедийного оборудования - компьютер, проектор, проекционный экран, компьютеры с возможностью выхода в Интернет и доступом в электронную информационно - образовательную среду.
7.2	Лаборатория кафедры экологии и биофизики университета оснащена специализированной мебелью и техническими средствами обучения: меловая доска, мобильный проекционный экран, портативный проектор, ноутбук, точка доступа Wi-Fi.
7.3	Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационную образовательную среду СурГУ:
7.4	539,541,542 Зал медико-биологической литературы и литературы по физической культуре и спорту.
7.5	441 Зал иностранной литературы.
7.6	442 Зал естественно-научной и технической литературы.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Проведение текущего контроля успеваемости по дисциплине

Методические рекомендации по проведению основных видов учебных занятий

При изучении дисциплины используются следующие основные методы и средства обучения, направленные на повышение качества подготовки аспирантов путем развития у аспирантов творческих способностей и самостоятельности:

- контекстное обучение мотивация аспирантов к усвоению знаний путем выявления связей между конкретными знаниями и его применением.
- проблемное обучение стимулирование аспирантов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.
- обучение на основе опыта активизация познавательной деятельности аспиранта за счет ассоциации и собственного опыта с предметом изучения.
- индивидуальное обучение выстраивание аспирантами собственной образовательной траектории на основе формирования индивидуальной программы с учетом интересов аспирантов.
- междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

Лекции являются одним из основных методов обучения по дисциплинам, направленным на подготовку к кандидатскому экзамену, которые должны решать следующие задачи:

- -изложить основной материал программы курса;
- -развить у аспирантов потребность к самостоятельной работе над учебником и научной литературой.

Главной задачей каждой лекции является раскрытие сущности темы и анализ ее основных положений.

Содержание лекций определяется рабочей программой курса. Крайне желательно, чтобы каждая лекция охватывала и исчерпывала определенную тему курса и представляла собой логически вполне законченную работу. Лучше сократить тему, но не допускать перерыва ее на таком месте, когда основная идея еще полностью не раскрыта.

Привлечение графического и табличного материала на лекции позволит более объемно изложить материал.

Целью практических занятий является:

- закрепление теоретического материала, рассмотренного аспирантами самостоятельно;
- проверка уровня понимания аспирантами вопросов, рассмотренных самостоятельно по учебной и научной литературе, степени и качества усвоения материала аспирантами;
- восполнение пробелов в пройденной теоретической части курса и оказание помощи в его усвоении.

В начале очередного занятия необходимо сформулировать цель, поставить задачи. Аспиранты выполняют задания, а преподаватель контролирует ход их выполнения путем устного опроса, проверки практических заданий.

Методические рекомендации по организации самостоятельной работы аспирантов

Целью самостоятельной работы аспирантов является формирование способностей к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу поиску новых неординарных решений, аргументированному отстаиванию своих предложений, умений подготовки выступлений и ведения дискуссий.

Методические рекомендации призваны помочь аспирантам организовать самостоятельную работу при изучении курса: с материа-

лами лекций, практических и семинарских занятий, литературы по общим и специальным вопросам.

Задачами самостоятельной работы аспирантов являются:

- систематизация и закрепление полученных теоретических знаний и практических умений;
- углубление и расширение теоретических знаний;
- формирование умений использовать нормативную, правовую, справочную документацию и специальную литературу;
- развитие познавательных способностей и активности: творческой инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развитие исследовательских умений;
- использование материала, собранного и полученного в ходе самостоятельных занятий на семинарах, на практических и лабораторных занятиях, при написании научно-исследовательских работ, для эффективной подготовки к кандидатскому экзамену.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется аспирантом по заданию преподавателя, но без его непосредственного участия. Основными видами самостоятельной работы аспиранта без участия преподавателя являются:

- формирование и усвоение содержания конспекта лекций на базе рекомендованной лектором учебной литературы, включая информационные образовательные ресурсы (электронные учебники, электронные библиотеки и др.);
- подготовка к семинарам, их оформление;
- составление аннотированного списка статей из соответствующих журналов по темам занятий;
- выполнение домашних заданий в виде решения отдельных задач, проведения типовых расчетов и индивидуальных работ по отдельным разделам содержания дисциплин и т.д.

Самостоятельная работа аспирантов осуществляется в следующих формах:

1) Подготовка к семинарским и практическим занятиям.

При подготовке к семинарским занятиям аспирантам необходимо ориентироваться на вопросы, вынесенные на обсуждение. На семинарских занятиях проводятся опросы, тестирование, разбор конкретных ситуаций, с активным обсуждением вопросов, в том числе по группам, с целью эффективного усвоения материала в рамках предложенной темы, выработки умений и навыков в профессиональной деятельности, а также в области ведения переговоров, дискуссий, обмена информацией, грамотной постановки задач, формулирования проблем, обоснованных предложений по их решению и аргументированных выводов.

2) Изучение основной и дополнительной литературы при подготовке к семинарским и практическим занятиям.

В целях эффективного и полноценного проведения таких мероприятий аспиранты должны тщательно подготовиться к вопросам семинарского занятия. Особенно поощряется и положительно оценивается, если аспирант самостоятельно организует поиск необходимой информации с использованием периодических изданий, информационных ресурсов сети интернет и баз данных специальных программных продуктов.

Самостоятельная работа аспирантов должна опираться на сформированные навыки и умения, приобретенные во время освоения предыдущих компонентов программы аспирантуры. Составляющим компонентом его работы должно стать творчество. В связи с этим рекомендуется:

- 1. Начинать подготовку к занятию со знакомства с рекомендованными и иными опубликованными научными публикациями.
- 2. Обратите внимание на структуру, композицию, язык публикации, время и историю его появления.
- 3. Определите основные идеи, принципы, тезисы, заложенные в публикацию.
- 4. Выясните, какой сюжет, часть изучаемой проблемы позволяет осветить проанализированный источник.
- 5. Проведите работу с незнакомыми терминами и понятиями, для чего используйте словари терминов, энциклопедические словари, словари иностранных слов и др.

Необходимо ознакомиться с библиографией темы и вопроса, выбрать доступные Вам издания из списка основной литературы, специальной литературы, рекомендованной к лекциям и семинарам. Рекомендованные списки могут быть дополнены.

Используйте справочную литературу. Поиск можно продолжить, изучив примечания и сноски в уже имеющихся у Вас в руках монографиях, статьях.

Работая с литературой по теме семинара, делайте выписки текста, содержащего характеристику или комментарий уже знакомого Вам источника. После чего вернитесь к тексту документа (желательно полному) и проведите его анализ уже в контексте изученной исследовательской литературы.

Возникающие на каждом этапе работы мысли следует записывать. Анализ документа следует сделать составной частью проработки вопросов семинара и выступления аспиранта на занятии. Общее знание проблемы, обсуждаемой на семинарском занятии, должно сочетаться с глубоким знанием источников.

Следует составить сложный план, схему ответа на каждый вопрос плана семинарского занятия. Проверить себя можно, выполнив тесты.

Методические рекомендации по проведению тестирования

Целью тестовых заданий является контроль и самоконтроль знаний по предмету. Кроме того, тесты ориентированы и на закрепление изученного материала. Тестовые задания составляются таким образом, чтобы проверить знания по разным разделам дисциплины, а также стимулировать познавательные способности аспирантов.

Выполнение тестовых заданий увеличивает быстроту усвоения материала, развивает четкость и ясность мышления, внимательность.

Методические рекомендации по написанию реферата

Реферат — форма письменной работы, которую рекомендуется использовать аспирантам в ходе занятий. Он представляет собой краткое изложение содержания научных трудов, учебной и справочной литературы по определенной научной теме. Объем реферата, как правило, составляет 18—20 страниц компьютерного текста. Подготовка реферата подразумевает самостоятельное изучение аспирантом определенного количества источников (первоисточников, научных монографий и статей и т.п.) по определенной теме, не рассматриваемой подробно на лекции, систематизацию материала и краткое его изложение.

Цель написания реферата – привитие навыков краткого и лаконичного представления собранных материалов и фактов в соответствии с общим требованиями по написанию рефератов:

членение материала по главам или разделам; выделение введения и заключительной части;

- лаконичное и систематизированное изложение материала;
- выделение главных, существенных положений, моментов темы;
- логическая связь между отдельными частями;
- выводы и обобщения по существу рассматриваемых вопросов;
- научный стиль изложения: использование философских и научных терминов и стандартных речевых оборотов. Не следует употреблять риторические вопросы и обращения, обыденную и жаргонную лексику, публицистические выражения;
- список использованной литературы (10–15 источников).

Качество работы оценивается по следующим критериям: самостоятельность выполнения; уровень эрудированности автора по изучаемой теме; выделение наиболее существенных сторон научной проблемы; способность аргументировать положения и обосновывать выводы; четкость и лаконичность в изложении материала; дополнительные знания, полученные при изучении литературы, выходящей за рамки образовательной программы. Очень важно иметь собственную доказательную позицию и понимание значимости анализируемой проблемы.

Методические рекомендации по подготовке презентаций

Создание материалов-презентаций — это вид самостоятельной работы аспирантов по созданию наглядных информационных пособий, выполненных с помощью мультимедийной компьютерной программы PowerPoint или иной. Этот вид работы требует координации навыков по сбору, систематизации, переработке информации, оформления ее в виде подборки материалов, кратко отражающих основные вопросы изучаемой темы, в электронном виде.

Создание материалов-презентаций расширяет методы и средства обработки и представления информации, формирует навыки публичного представления результатов научных исследований.

Роль аспиранта:

- изучить материалы темы, выделяя главное и второстепенное;
- установить логическую связь между элементами темы;
- представить характеристику элементов в краткой форме;
- выбрать опорные сигналы для акцентирования главной информации и отобразить в структуре работы;
- оформить работу и предоставить к установленному сроку.

Не рекомендуется:

- перегружать слайд текстовой информацией;
- использовать блоки сплошного текста;
- в нумерованных и маркированных списках использовать уровень вложения глубже двух;
- использовать переносы слов;
- использовать наклонное и вертикальное расположение подписей и текстовых блоков;
- текст слайда не должен повторять текст, который произносится вслух (зрители прочитают его быстрее, чем расскажет аспирант, и потеряют интерес к его словам).

Методические рекомендации по подготовке индивидуальных докладов

Научный доклад – результат проведенного аспирантом научного исследования по определенной тематике, выносимый на публичное обсуждение. Тезисы докладов, как один из видов научных публикаций, представляют собой краткие публикации, как правило, содержащие 1-3 страницы, отражающие основные результаты исследований по определенной тематике.

Научный доклад должен содержать краткий, но достаточный для понимания отчет о проведенном исследовании и объективное обсуждение его значения. Отчет должен содержать достаточное количество данных и ссылок на опубликованные источники информации.

Разработка научного доклада требует соблюдения определенных правил изложения материала. Все изложение должно соответствовать строгому логическому плану и раскрывать основную цель доклада.

Основные моменты, которыми следует руководствоваться аспирантам при подготовки научных докладов можно изложить в следующих пунктах:

- актуальность темы;
- развитие научной мысли по исследуемой тематике;
- осуществление обратной связи между разделами доклада;
- обращение к ранее опубликованным материалам по данной теме;
- широкое использование тематической литературы;
- четкая логическая структура компоновки отдельных разделов доклада.

Научный доклад должен включать в себя следующие структурные элементы:

- 1) вступление;
- 2) основные результаты исследования и их обсуждение;
- 3) заключение (выводы);
- 4) список использованных при подготовке и цитированных источников.

При подготовке любой научной или аналитической работы, связанной с проведением исследований, требуется грамотно оформить вступление. Целью вступления является доведение до слушателей основных задач, которые ставил перед собой автор.

Как правило, вступление должно в себя включать: раскрытие уровня актуальности данной темы; подробное объяснение причин, по которым была выбрана тема; определение целей и задач; необходимую вводную информацию по теме; четкий план изложения материала.

Далее автором в краткой форме излагаются основные результаты, полученные в ходе исследования, и на их основании делаются выводы. Этот раздел можно насытить иллюстрациями - таблицами, графиками, которые несут основную функцию доказательства, представляя в свернутом виде подготовленный материал. В случае, если полученная в результате исследования информация позволяет двоякое толкование фактов, делаются альтернативные выводы.

Методические рекомендации по подготовке к кандидатскому экзамену.

Организация и проведение кандидатских экзаменов в СурГУ регламентируется следующими документами:

- Постановлением Правительства Российской Федерации от 24.09.2013 г. №842 «О порядке присуждении ученых степеней»,

- Приказом Министерства образования и науки Российской Федерации от 28.03.2014 г. №247 «Порядок прикрепления лиц для сдачи кандидатских экзаменов, сдачи кандидатских экзаменов и их перечень»;
- СТО-2.12.11 «Порядок проведения кандидатских экзаменов».

Кандидатские экзамены являются формой промежуточной аттестации аспирантов, их сдача обязательна для присуждения ученой степени кандидата наук.

Цель кандидатского экзамена по специальности 1.5.2. Биофизика состоит в проверке приобретенных аспирантами знаний. Экзамен также ставит целью установить глубину профессиональных знаний соискателя ученой степени кандидата биологических наук, уровень подготовленности к самостоятельной научно-исследовательской работе.

Экзамен по специальности включает обсуждение двух теоретических вопросов и собеседование по теме диссертации (третий вопрос) в соответствии с программой кандидатского экзамена, утверждённой проректором по УМР СурГУ.

Для успешной сдачи экзамена аспиранту необходимо выполнить несколько требований:

- 1) регулярно посещать аудиторные занятия по дисциплине; пропуск занятий не допускается без уважительной причины;
- 2) в случае пропуска занятия аспирант должен быть готов ответить на экзамене на вопросы преподавателя, взятые из пропущенной темы:
- 3) аспирант должен точно в срок сдавать письменные работы на проверку и к следующему занятию удостовериться, что они зачтены;
- 4) готовясь к очередному занятию по дисциплине, аспирант должен прочитать соответствующие разделы в учебниках, учебных пособиях, монографиях и пр., рекомендованных преподавателем в программе дисциплины, и быть готовым продемонстрировать свои знания; каждое участие аспиранта в обсуждении материала на практических занятиях отмечается преподавателем и учитывается при ответе на экзамене.