Документ подписан пр**Оценочиный оматер**иал для диагностического тестирования

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность Тесттовое задание для диагностического тестирования по дисциплине: Дата подписания: 16.06.2025 11:25:06

Уникальный программный ключ: e3a68f3eaa1e62674 Математинеские методы и модели принятия решений, 2 семестр

Код, направление подготовки	01.04.02, Прикладная математика и информатика
Направленность (профиль)	Математическое и информационное обеспечение систем управления деятельностью предприятий нефтегазовой отрасли
Форма обучения	очная
Кафедра-разработ- чик	Прикладная математика
Выпускающая ка- федра	Прикладная математика

Проверяемая	Задание	Варианты ответов	Тип сложно-
компетенция ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какие из постановок многокритериальной задачи принятия решений при определённости является верной.	1. Задано множество альтернатив $X=\left\{x_j\right\}_{j=\overline{1,n}}$, каждая из которых обладает m свойствами z_1,\ldots,z_m .Каждой j —ой альтернативе x_j соответствуют критериальные оценки $z_1(x_j),\ldots,z_m(x_j)$.Требуется - выделить лучшую альтернативу. 2. Задано множество альтернатив $X=\left\{x_j\right\}_{j=\overline{1,n}}$, каждая из которых обладает m свойствами (характеристиками) z_1,\ldots,z_m .Каждой j —ой альтернативе x_j соответствуют критериальные оценки $z_1(x_j),\ldots,z_m(x_j)$.Требуется распределить альтернативы по классам решений. 3. Задано множество альтернатив $X=\left\{x_j\right\}_{j=\overline{1,n}}$, каждая из которых обладает m свойствами z_1,\ldots,z_m . Каждой j —ой альтернативе x_j соответствуют критериальные оценки $z_1(x_j),\ldots,z_m(x_j)$.Требуется упорядочить альтернативы по совокупности свойств. 4. Задано множество альтернатив $X=\left\{x_j\right\}_{j=\overline{1,n}}$, каждая из которых обладает	средний

ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Лучшая альтернатива по принципу относительной уступки определяется формулой:	свойством z .Каждой j —ой альтернативе x_j соответствует критериальная оценка $z(x_j)$.Требуется - выделить лучшую альтернативу. $1.x^* = arg \max_{x \in X} \prod_{i=1}^m \gamma_i^{z_i(x)} \\ 2.x^* = arg \min_{x \in X} \sum_{i=1}^m \gamma_i \log z_i(x) \\ 3.x^* = arg \max_{x \in X} \sum_{i=1}^m z_i(x) \log \gamma_i \\ 4.x^* = arg \max_{x \in X} \prod_{i=1}^m (z_i(x))^{\gamma_i}$	низкий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Лучшая альтернатива по принципу абсолютной уступки определяется формулой:	$1.x^* = \arg \max_{x \in X} \sum_{i=1}^{m} \gamma_i z_i(x)$ $2.x^* = \arg \max_{x \in X} \sum_{i=1}^{m} \gamma_i \log z_i(x)$ $3.x^* = \arg \max_{x \in X} \sum_{i=1}^{m} z_i(x) \log \gamma_i$ $4.x^* = \arg \max_{x \in X} \prod_{i=1}^{m} (z_i(x))^{\gamma_i}$	низкий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Лучшая альтернатива по принципу идеальной точки определяется формулой:	$1.x^* = arg \min_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^I - z_i(x) \right)^2, \text{где}$ $\left(z_1^{\ I}, \dots, z_m^{\ I} \right) =$ $\left(\min_{x \in X} z_i(x), \dots, \min_{x \in X} z_m(x) \right)$ $2.x^* = arg \min_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^I - z_i(x) \right)^2, \text{где}$ $\left(z_1^{\ I}, \dots, z_m^{\ I} \right) =$ $\left(\max_{x \in X} z_i(x), \dots, \max_{x \in X} z_m(x) \right)$ $3.x^* = arg \max_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^I - z_i(x) \right)^2, \text{где}$ $\left(z_1^{\ I}, \dots, z_m^{\ I} \right) =$ $\left(\max_{x \in X} z_i(x), \dots, \max_{x \in X} z_m(x) \right)$ $4.arg \max_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^I - z_i(x) \right)^2, \text{где}$ $\left(z_1^{\ I}, \dots, z_m^{\ I} \right) =$ $\left(\min_{x \in X} z_i(x), \dots, \max_{x \in X} z_m(x) \right)$	низкий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Лучшая альтернатива по принципу главного критерия определяется формулой:	$\begin{aligned} 1.x^* &= arg \max_{x \in X_0} z_1(x), X_0 = \{x : x \in X, z_i(x) \leq \bar{z}_i, \bar{z}_i = const, i = 2,, m\} \\ 2.x^* &= arg \max_{x \in X_0} z_1(x), X_0 = \{x : x \in X, z_i(x) \geq \bar{z}_i, \bar{z}_i = const, i = 2,, m\} \\ 3.x^* &= arg \min_{x \in X_0} z_1(x), X_0 = \{x : x \in X, z_i(x) \geq \bar{z}_i, \bar{z}_i = const, i = 2,, m\} \\ 4.x^* &= arg \min_{x \in X_0} z_1(x), X_0 = \{x : x \in X, z_i(x) \leq \bar{z}_i, \bar{z}_i = const, i = 2,, m\} \end{aligned}$	низкий

ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Лучшая альтернатива по принципу антиидеальной точки определяется формулой:	$1.x^* = arg \min_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^{AI} - z_i(x) \right)^2$, где $(z_1^{AI}, \dots, z_m^{AI}) = (\min_{x \in X} z_i(x), \dots, \min_{x \in X} z_m(x))$ $2.x^* = arg \max_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^{AI} - z_i(x) \right)^2$, где $(z_1^{AI}, \dots, z_m^{AI}) = (\min_{x \in X} z_i(x), \dots, \min_{x \in X} z_m(x))$ $3.x^* = arg \max_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^{AI} - z_i(x) \right)^2$, где $(z_1^{AI}, \dots, z_m^{AI}) = (\max_{x \in X} z_i(x), \dots, \max_{x \in X} z_m(x))$ $4.x^* = arg \min_{x \in X} \sum_{i=1}^m \gamma_i^2 \left(z_i^{AI} - z_i(x) \right)^2$, где $(z_1^{AI}, \dots, z_m^{AI}) = (\max_{x \in X} z_i(x), \dots, \max_{x \in X} z_m(x))$	низкий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Совокуп- ность каких элементов образует шкалу?	 Логической системы Числовой системы Отображения Эмпирической системы 	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какими свой- ствами обла- дает мат- рица парных сравнений?	1.Неотрицательна 2.Разложима 3.Неразложима 4.Положительна	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какие акси- омы общего порядка ле- жат в основе теории по- лезности?	1.Рефлексивности 2.Транзитивности 3.Растворимости 4.Слабого порядка	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	При оценке качества альтернатив какие ситуации априорной информированности ЛПР о состояниях среды могу иметь место?	 ЛПР известно априорное распределение вероятностей, определенное на множестве на элементах состояний среды. ЛПР известно, что среда активно противодействует его целям ЛПР известно, что среда частично содействует его целям ЛПР имеет приблизительную априорную информацию о состояниях среды 	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какие критерии применяются при первой ситуации информативности ЛПР о состояниях среды?	1.Байеса-Лапласа 2.Гермейера 3.Сэвиджа 4.Минимума среднеквадратичного откло- нения	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какие критерии применяются при	1.Вальда 2.Гурвица 3.Сэвиджа 4.Гермейера	средний

ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	второй ситуации информативности ЛПР о состояниях среды? Какие критерии применяются притретьей ситуации информативности ЛПР о со-	1.Байеса-Лапласа 2.Гурвица 3.Сэвиджа 4. Ходжеса — Лемана	средний
ОПК-2.1	стояниях среды?	1.Нормального вектора	средний
ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	ную важ- ность крите- риев можно описать с по- мощью:	2.Весового вектора 3.Ряда приоритета 4.Вектора приоритета	ородпии
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	При каких видах нор-мализации все значения критериев становятся неотрица-тельными	1.Сравнительная 2.Естественная 3.Сэвиджа 4.Относительная	средний
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Какие из методов относятся к методом обработки результатов экспертизы	 Построение обобщенной ранжировки Парные сравнения Непосредственная оценка Определение относительных весов альтернатив 	высокий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	На основе результатов ранжирования можно вычислить	 Обобщенную ранжировку Лучшую альтернативу Компетентность экспертов Согласованность мнений экспертов 	высокий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	При проведении последовательного сравнения эксперт проводит следующие действия	 Ранжирование Непосредственная оценка Сортировка Нормировка 	высокий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2 ПК-3.3	Принцип оп- тимальности по Парето использу- ется для	 Сокращения множества альтернатив Определения лучшей альтернативы Классификации альтернатив Построения множества компромиссов 	высокий
ОПК-2.1 ОПК-2.2 ОПК-3.1 ОПК-3.2	В каких кри- териях	1. Вальда 2. Сэвиджа 3. Гермейера	высокий

ПК-3.3	можно ис-	4. Гурвица	
	пользовать		
	как функцию		
	полезности,		
	так и функ-		
	цию потерь?		