Документ подписан простой алектронной подписью диагностического тестирования по дисциплине Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 20.06.2025 07:32:33

Уникальный программный ключ:

уникальный программный ключ: технологии программирования, 6 семестр e3a68f3eaa1e62674b54f4998099d3d6bfdcf835

Код, направление подготовки	09.03.01 Информатика и вычислительная техника
Направленность (профиль)	Автоматизированные системы обработки информации и управления
Форма обучения	Очная
Кафедра разработчик	АСОИУ
Выпускающая кафедра	АСОИУ

№	Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса
1	ПК-7, ПК-8, ПК-12	Какие существуют метрики, отражающие эффективность алгоритма?	1. надежность, масштабируемость 2. процессорное время, память 3. адаптивность, простота реализации	Низкий
2	ПК-7, ПК-8, ПК-12	Динамические структуры данных — это структуры данных, под которые и по мере		Низкий
3	ПК-7, ПК-8, ПК-12	При рассмотрении времени работы Т(М) и памяти М(N) что нас интересует?		Низкий
4	ПК-7, ПК-8, ПК-12	Какая оценка снизу справедлива для сортировок?	1. O(N) 2. O(log N) 3. O(N^2) 4. O(N*log N)	Низкий
5	ПК-7, ПК-8, ПК-12	При размере входных данных N, как рассчитывается время работы алгоритма?	1. как O(N) 2. в сравнении с N 3. как функция от параметра N 4. не зависимо от N	Низкий

6	ПК-7, ПК-8, ПК-12	Соотнесите алгоритмы сортировки с их временной сложностью	 Пузырьком ↔ O(N^2) Быстрая ↔ O(N+K) Подсчётом ↔ O(N*log(N)) 	Средний
7	ПК-7, ПК-8, ПК-12	Для алгоритма сортировки слиянием mergesort при каком количестве элементов в последовательн ости рекурсивное деление должно прерываться, в стандартном виде?	1. 3 2. 4 3. 2 4. 1	Средний
8	ПК-7, ПК-8, ПК-12	Какое максимальное число потомков может быть у узла бинарного дерева?		Средний
9	ПК-7, ПК-8, ПК-12	Какое дерево называется разбалансирова нным?	1. размеры левых и правых поддеревьев в нем сильно различаются 2. если значения ключей в левом поддереве намного меньше значений ключей в правом поддереве 3. если существуют вершины-потомки, ключи которых больше ключей родителей, если в остальных вершинах это свойство не нарушено 4. если в нем нарушен порядок неубывания ключей	Средний

10	ПК-7, ПК-8, ПК-12	Где будет находиться наиболее часто встречающийся символ в дереве кодирования Хаффмана?	1. в самой крайней левой вершине 2. на нижнем уровне дерева 3. в самой крайней правой вершине 4. может находиться в любом месте 5. на вернем уровне дерева	Средний
11	ПК-7, ПК-8, ПК-12	Бинарное дерево — это структура данных, в которой каждый содержит и на левого и правого		Средний
12	ПК-7, ПК-8, ПК-12	Какие две операции должен выполнять стек?	1. insert, delete 2. set, get 3. push, pop 4. enqueue, dequeue	Средний
13	ПК-7, ПК-8, ПК-12	Сколько дополнительной памяти требуется для работы алгоритма quick-sort?	1. алгоритм не использует дополнительную память 2. O(N) 3. O(N^3) 4. O(N^2)	Средний
14	ПК-7, ПК-8, ПК-12	Что означает устойчивость алгоритма сортировки?	1. время работы алгоритма относительно стабильно при различной величине входных данных 2. если при работе алгоритма относительный порядок пар с равными ключами не меняется 3. процент ошибок при сортировке меньше 4. сортировка происходит на любых данных	Средний

			1. эта структура используется для	
15	ПК-7, ПК-8, ПК-12	Какие высказывания относятся к структуре данных связный список?	реализации стека 2. в конце структуры нулевой указатель, указатель на первый элемент хранится отдельно 3. в каждом узле содержатся указатель на следующий узел и данные 4. время доступа к элементу константное	Средний
16	ПК-7, ПК-8, ПК-12	Какие действия включает в себя операция вставки (Insert(x)) в двоичном дереве поиска?	1. вершину w объявим левым сыном v, если key(v) > key(w) 2. если поиск завершился удачей, создадим новую вершину w с ключем x 3. вершину w объявим правым сыном v, если key(v) < key(w) 4. если поиск завершился неудачей, создадим новую вершину w с ключем x 5. поиск ключа x в дереве	Высокий
17	ПК-7, ПК-8, ПК-12	Типичный порядок полей триплета для LZ77:	1. offset 2. length 3. next	Высокий
18	ПК-7, ПК-8, ПК-12	Выберите компоненты L- системы	1. набор ограничений 2. множество целых чисел, называемое ключами 3. теорема 4. аксиома 5. правила 6. алфавит	Высокий

19	ПК-7, ПК-8, ПК-12	Основные проблемы, которые необходимо решать при реализации алгоритма RLE:	1. сохранение закодированных данных на диск 2. способность алгоритма отличать закодированные данные от исходных 3. хранение таблицы символов 4. корректная работа со скользящим окном	Высокий
20	ПК-7, ПК-8, ПК-12	Что можно сделать для алгоритма Quick-sort, чтобы дерево рекурсии было всегда сбалансированным?	1. выбирать правильный опорный элемент (pivot) 2. уменьшить число рекурсий в рекурсивной функции	Высокий