Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Серформа оценочного материала для диагностического тестирования

Должность: ректор

Дата подписания: 20.06.2024 08:55:52 Уникальный пр**Престорное**: **задание для диагностического тестирования по дисциплине**:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

МАТЕМАТИКА

Код, направление подготовки	04.05.01 Фундаментальная и прикладная химия
Направленность (профиль)	Аналитическая химия
Форма обучения	очная
Кафедра- разработчик	Прикладной математики
Выпускающая кафедра	Химии

№п\п	Задание	Варианты ответов	Тип сложност и вопроса
1.	Произведением матриц $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 5 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & -2 \\ 0 & 1 \\ 2 & -1 \end{pmatrix}$ является матрица	1. $\begin{pmatrix} 9 & -8 \\ 13 & 7 \end{pmatrix}$ 2. $\begin{pmatrix} 7 & 12 \\ -3 & -8 \end{pmatrix}$ 3. $\begin{pmatrix} 7 & -3 \\ 12 & -8 \end{pmatrix}$ 4. $\begin{pmatrix} 7 & 13 \\ -8 & 9 \end{pmatrix}$	<u>Низкий</u>
2.	Даны комплексные числа z_1 =2+ i и z_2 = 1-3 i . Результат вычисления $3z_1$ -5 z_2 равен	12+4 <i>i</i> 2. 3-8 <i>i</i> 3. 1+18 <i>i</i> 4. 5-4 <i>i</i>	Низкий
3.	Даны векторы $\vec{a}=(2;-1;3)$ и $\vec{b}=(1;-4,-1)$. Найти $3\vec{b}-2\vec{a}$	1. (-1; -10; -9) 2. (4; 13; -2) 3. (1; -3; 1) 4. (21; -3; 11)	Низкий
4.	Длина стороны АВ в треугольнике АВС с вершинами A(3; 3), B(9;11), C(15; -2) равна		Низкий
5.	Уравнением $2x^2 + 5y^2 = 10$ задается линия второго порядка, называемая	1. гиперболой 2.эллипсом 3. окружностью 4. параболой	Низкий
6.	Система линейных уравнений $ \begin{cases} x-2y-2z=0\\ 3x-5y+2z=0\\ 2x-3y+4z=0 \end{cases} $	1. имеет единственное решение 2. имеет два решения 3. имеет бесконечно много решений 4. не имеет решений	Средний

7.	Матричное уравнение $A \cdot X = B$ с невырожденной квадратной матрицей A имеет решение, которое находится по формуле	1. $X = B \cdot A^{-1}$ 2. $X = B \cdot A^{T}$ 3. $X = A^{-1} \cdot B$ 4. $X = A \cdot B$	Средний
8.	Определитель матрицы $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ равен		Средний
9.	Длина вектора $\vec{a} = (2; -6; -3)$ равна		Средний
10.	Даны комплексные числа z_1 =5+2 i и z_2 = 1-2 i . Произведение z_1 * z_2 равно	1. 1+4 <i>i</i> 2. 9-8 <i>i</i> 3. 1-8 <i>i</i> 4. 5-4 <i>i</i>	Средний
11.	Установите соответствие между признаками и их формулировками. В ответ запишите трехзначное число без пробелов и запятых. А. Признак коллинеарности векторов Б. Признак перпендикулярности векторов В. Признак компланарности векторов	1. Скалярное произведение векторов равно нулю 2. Смешанное произведение векторов равно нулю 3. Координаты векторов пропорциональны	Средний
12.	Обратной к матрице $\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix}$ является матрица	1. $\begin{pmatrix} -5 & -3 \\ -7 & -4 \end{pmatrix}$ 2. $\begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix}$ 3. $\begin{pmatrix} 4 & -7 \\ -3 & 5 \end{pmatrix}$ 4. $\begin{pmatrix} -5 & 3 \\ 7 & -4 \end{pmatrix}$	Средний
13.	Прямая, проходящая через точку A(-2; 1) и перпендикулярная прямой 2 <i>x</i> +3 <i>y</i> -1=0, имеет уравнение	1. 2x+3y-4=0 2. 3x-2y+8=0 3. 3x+2y-8=0 4. 2x-3y-4=0	Средний
14.	Уравнение плоскости, проходящей через точку $A(1; -2; -1)$ и перпендикулярной прямой $\frac{x-2}{3} = \frac{y-1}{-2} = \frac{z+1}{1}$, имеет вид:	1. 3 <i>x</i> -2 <i>y</i> + <i>z</i> -1=0 2. <i>x</i> -2 <i>y</i> - <i>z</i> -1=0 3. <i>x</i> -2 <i>y</i> - <i>z</i> +2=0 4. 3 <i>x</i> -2 <i>y</i> + <i>z</i> -6=0	Средний
15.	Установите соответствие между уравнениями линий второго порядка и их названиями. В ответ запишите четырехзначное число без пробелов и запятых. А. $3x^2 - 5y^2 - 2x + 4y - 10 = 0$ Б. $3x^2 + 2y^2 - 6x + 4y - 7 = 0$ В. $5x^2 + 5y^2 - x + 4y - 16 = 0$ Г. $5y^2 - 2x + 7y - 12 = 0$	1. окружность 2.эллипс 3. гипербола 4. парабола	Средний

16.	Частным решением системы линейных $\begin{cases} x+y+2z=7\\ y+z=3 \end{cases}$ является $x+2y+3z=10$	1. (1; 3; -2) 2. (-2; 3; 2) 3. (1; -3; 1) 4. (3; 2; 1)	Высокий
17.	Установите соответствие между квадратичными формами и соответствующими высказываниями. В ответ запишите четырехзначное число без пробелов и запятых. А. $f = 3x_1^2 + 5x_2^2 + x_3^2$ Б. $f = -2x_1^2 - x_2^2 - 4x_3^2$ В. $f = x_1^2 - x_2^2 + x_3^2$ С. $f = x_1^2 + 2x_1x_2 - 5x_2^2 + 2x_3^2$	1. Положительно определенная квадратичная форма 2. Квадратичная форма торма приведена к нормальному виду 3. Отрицательно определенная квадратичная форма 4. Квадратичная форма не приведена к каноническому виду	Высокий
18.	Установите соответствие между уравнениями прямой на плоскости и их названиями. В ответ запишите четырехзначное число без пробелов и запятых. А. $x\cos\alpha + y\sin\alpha - p = 0$ Б. $\frac{x}{a} + \frac{y}{b} = 1$ В. $Ax + By + C = 0$ Г. $\frac{x - x_0}{l} = \frac{y - y_0}{m}$	1. Общее уравнение прямой 2.Каноническое уравнение прямой 3. Нормальное уравнение прямой 4. Уравнение прямой «в отрезках»	Высокий
19.	Даны векторы $\vec{a}=(2;-1;3)$ и $\vec{b}=(1;-4,-2)$. Выберите из списка все правильные высказывания. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых	1.они коллинеарны 2. скалярное произведение этих векторов равно 0 3. они перпендикулярны 4. они одинаково ориентированы 5. скалярное произведение этих векторов равно 3 6. смешанное произведение этих векторов равно 0	Высокий
20.	Ранг матрицы $\begin{pmatrix} 3 & -2 & 5 & 4 \\ 6 & -4 & 4 & 3 \\ 9 & -6 & 3 & 2 \\ 12 & -8 & 8 & 6 \end{pmatrix}$ равен	. ,	Высокий

№ п\п	Задание	Варианты ответов	Тип
			сложности
			вопроса

1.	Формула для нахождения производной произведения двух функций имеет вид	1) $(uv)' = uv + u'v'$ 2) $(uv)' = u'v + uv'$ 3) $(uv)' = u'v'$ 4) $(uv)' = u'v - uv'$	низкий
2.	Производная функции $y = \sin x^2$ равна	1) cos 2x 2) 2cos x 3) xcos x ² 4) 2xcos x ²	низкий
3.	Предел последовательности равен $x_n = \frac{2n}{n+1}$ Неопределенный интеграл — это	1) 2 2) 1 3) 0.5 4) 0	низкий
4.	Неопределенный интеграл — это совокупность всех [[]] функции.	1) дифференциалов 2) производных 3) первообразных 4) пределов	низкий
5.	Определенный интеграл $\int\limits_{1}^{e}\frac{dx}{x}$ равен	1) 1 2) $\frac{1}{e}$ - 1 3) e - 1 4) e	низкий
6.	Производная функции $y = $ arctg e^x равна	1) $e^{x} \operatorname{arctg} e^{x}$ 2) $\frac{e^{x}}{1+e^{2x}}$ 3 $\frac{1}{1+e^{x}}$ 4) $\frac{e^{x}}{\cos^{2}e^{x}}$	средний
7.	Предел функции $\lim_{\substack{x\to 0}} \frac{\sin 3x \sin 4x}{2x^2}$ равен	1) 3 2) 12 3) 4 4) 6	средний
8.	Предел $\lim_{n o \infty} \left(\sqrt{n+1} - \sqrt{n} \right)$ равен	1) 1 2) ∞ 3) 0 4) √2	средний
9.	Сопоставьте функциям их производные	1) 2^{x} 2) $\arcsin x$ 3) $\operatorname{tg} x$ 4) $\operatorname{arcctg} x$ a) $\frac{1}{\cos^{2}x}$ b) $2^{x} \ln 2$ c) $\frac{-1}{1+x^{2}}$ d) $\frac{1}{\sqrt{1-x^{2}}}$	средний
10.	Асимптотами функции $y = \frac{4}{x}$ являются прямые	1) $y = 4x$ 2) $y = x$ 3) $x = 0$ 4) $y = 0$	средний
11.	При помощи формулы $\int\limits_{a}^{b} \sqrt{x'^2 + y'^2} dt$ можно вычислить	1) площадь криволинейной трапеции 2) длину кривой 3) объема тела вращения	средний

		4) площадь поверхности	
		вращения	
12. Интегра	Л	1) $arctg(x^2 + 1) + C$	средний
'		2) $arctg(2x) + C$	
	$\int \frac{2xdx}{x^2 + 1}$	3) $\ln(2x+1) + C$	
равен	•	4) $\ln(x^2 + 1) + C$	
13. Из пере	численных функций	1) неотрицательные	средний
	е все, которые являются	2) непрерывные	
интегрир	руемыми по Риману.	3) монотонные	
		4) ограниченные	
14. Укажите	значение интеграла	$1) e^2 + 1$	средний
		$(2) e^2$	
	$\int xe^x dx$	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$ 1	
15. Произво	о одная функции	4) 1	сропций
			средний
	$= 10 \ln \left(x + \sqrt{x^2 + 9} \right)$		
	х = 4 равна		
I	ге все верные	1) непрерывная на отрезке	высокий
утвержд	ения.	функция ограничена	
		2) непрерывная на отрезке функция достигает на нем	
		максимального значения	
		3) непрерывная на отрезке	
		функция	
		дифференцируема на нем	
		4) непрерывная на отрезке	
		функция всегда монотонна	
1 7 7	оизводная		высокий
f'(x) =	$x^2 + 2x - 3$ функции $f(x)$.		
Тогда ф	ункция имеет точку		
	а при <i>x</i> =		
18. Произво	дная от интеграла	1. xchx	высокий
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	xdx равна	2. xsinx	
J x cos.	равна	3. xcosx	
		4. xshx	
10 Pulifonut	TO 140 OF 140 YO DOO	1	DI IOOIMA T
<u> </u>	ге из списка все ные высказывания для	1. Прямая <i>х=а</i> является вертикальной асимптотой к	высокий
	ные высказывания для ения: «Если	графику функции	
lim f	$x) = +\infty$.	2. Точка <i>х=а</i> является	
$x \rightarrow a+0$	$(x) = +\infty$;	точкой максимума	
$\lim_{t \to \infty} f(t)$	$(x) = -\infty$, TO»	3. Точка <i>х=а</i> является	
$x \rightarrow a - 0$, 10//	точкой разрыва 2 рода	
		4. Прямая <i>х=а</i> является	
		горизонтальной асимптотой	
		к графику функции	
		5. Точка <i>х=а</i> является	
		точкой разрыва 1 рода	
		6. Прямая <i>х=а</i> является	
1		касательной к графику функции	
		функции	

$_{ ho}p$	
$c \ln \sqrt{x}$	
$\int \Pi I \nabla \lambda$	
ax	
J x	
ĺ	

№ п\п	Задание	Варианты ответов	Тип сложности вопроса
1.	Формула общего члена числового ряда $\frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \frac{5}{3^4} + \dots$	1) $\frac{n+1}{3^n}$ 2) $\frac{n+2}{n^2}$ 3) $\frac{2^{n+1}}{3^n}$ 4) $\frac{n}{3^n}$	низкий
2.	Дифференциал функции двух переменных $z = x^3 + 3x^2y - y^3 \text{ равен}$	1) $(3x^2 + 6xy)dx + (3x^2 - 3y^2)dy$ 2) $(3x^2 + 6x)dx + (3 - 3y^2)dy$ 3) $6xydx + 3x^2dy$ 4) $3x^2 + 6xy - 3y^2$	низкий
3.	Изменение порядка интегрирования преобразует интеграл $\int\limits_0^1 dx \int\limits_0^x dy$ к виду	1) $\int_{0}^{1} dy \int_{y}^{1} dx$ 2) $\int_{0}^{1} dy \int_{0}^{1} dx$ 3) $\int_{y}^{1} dy \int_{0}^{1} dx$ 4) $\int_{0}^{y} dy \int_{0}^{1} dx$	низкий
4.	Общее решение уравнения $y'=y$ имеет вид	1) $y = Ce^{x}$ 2) $y = e^{x} + C$ 3) $y = Ce^{x} + C_{1}$ 4) $y = Ce^{2x}$	низкий
5.	Общее решение уравнения $y'' - 6y' + 5y = 0$ имеет вид	1) $y = C_1 e^x + C_2 e^{5x}$ 2) $y = C_1 e^{5x} + C_2 x e^x$ 3) $y = C_1 e^x + C_2 x e^{5x}$	низкий

		4) $y = C_1 e^{5x} \cos x + C_2 e^{5x} \sin x$	
6.	Числовой ряд $\sum_{n=1}^{\infty} \frac{1+3n}{5n+1}$	 расходится сходится условно сходится абсолютно 	средний
7.	Для определения сходимости числового ряда $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n(n+1)} \text{следует}$ воспользоваться	 признаком Лейбница необходимым условием сходимости признаком Даламбера интегральным признаком 	средний
8.	Радиус сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{2^n x^n}{3n+1}$ равен		средний
9.	Уравнение $y' \sin x = \frac{y}{\ln y}$ является уравнением	 с разделяющимися переменными линейным однородным Бернулли в полных дифференциалах 	средний
10.	Смешанная вторая производная функции $z = (xy - 2x)e^y$ равна	1) $(y-1)e^{y}$ 2) $(y+1)e^{y}$ 3) $(y-x)e^{y}$	средний
11.	Площадь фигуры, ограниченная линиями $yx = 4$, $y = x$, $x = 4$, выражается интегралом	4) $(x - y)e^{y}$ 1) $\int_{2}^{4} dx \int_{\frac{4}{x}}^{x} dy$ 2) $\int_{2}^{4} dx \int_{4}^{2} dy$ 3) $\int_{2}^{4} dx \int_{\frac{4}{x}}^{4} dy$ 4) $\int_{0}^{4} dx \int_{\frac{4}{x}}^{x} dy$ 5) $\int_{0}^{4} dx \int_{\frac{4}{x}}^{4} dy$	средний
12.	Криволинейный интеграл $\int\limits_{(1,1)}^{(2,2)}\!$		средний

13.	Вычислить $\iint dx dy$ по		средний
	области <i>D</i> , ограниченной кривыми <i>x</i> =0, <i>y</i> =0, <i>x</i> + <i>y</i> =2.		
14.	Дать наиболее полную классификацию дифференциальному уравнению $xdx + ydy = 0$	1) Диф. ур. с разделенными переменными; 2) Диф. ур. с разделяющимися переменными; 3) Однородное диф. ур.; 4) Диф. ур. Бернулли; 5) Диф. ур. Лагранжа; 6) Диф. ур. Клеро; 7) Диф. ур. первого порядка; 8) Диф. ур. второго порядка; 9) Линейное диф. ур.; 10) Нелинейное диф. ур.; 11) Диф. ур. в полных дифференциалах.	средний
15.	От пути интегрирования не зависит интеграл	1) $\int_{L} 2e^{2x+y} dx + e^{2x+y} dy$ 2) $\int_{L} 2xe^{x^2+y} dx + ye^{2x+y} dy$ 3) $\int_{L} \cos(x-2y) dx + 2\cos(x-2y) dy$ 4) $\int_{L} \cos(x-2y) dx + 2\sin(x-2y) dy$	средний
16.	Вычислить $\iint_D dx dy$ по области D , ограниченной	L	высокий
17.	кривыми $x = 0$, $y = 0$, $x + y = 2$. Вычислить $\iiint_V \frac{1}{\pi} dx dy dz$, где V ограничена поверхностями $x = 0$, $y = 0$, $z = 0$, $x = 2$, $y = 3$,		высокий
18.	$z=4$. Вычислить $\int_{L}^{1} \frac{1}{\pi} dl$, где кривая L определяется выражением $x^2+y^2=4$		высокий
19.	Числовой ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+1}$	 сходится абсолютно расходится сходится условно 	высокий
20.	Частное решение уравнения $y'' - 5y' + 4y = xe^{2x}$ имеет вид	1) $(Ax + B)e^{2x}$ 2) Axe^{2x} 3) $(Ax + B)e^{x}$ 4) $(Ax + B)e^{4x}$	высокий

№ п\п	Задание	Варианты ответов	Тип сложности вопроса
1.	Число перестановок множества из <i>n</i>	1) n!	низкий
	элементов определяется по формуле	$2) \frac{n(n+1)}{2}$	
		3) $\frac{n!}{(n-1)!}$ 4) 2^n	
		·	
2.		1) n!	низкий
	определяется по формуле	$2) \frac{n!}{k!(n-k)!}$	
		$3) \frac{n!}{(n-k)!}$	
		4) <i>k</i> ⁿ 1) <i>n</i> !	
3.	Число сочетаний из n элементов по k	1) n!	низкий
	определяется по формуле	$2) \frac{n!}{k!(n-k)!}$	
		k!(n-k)!	
		n!	
		3) $\frac{n!}{(n-k)!}$	
		4) k ⁿ	
4.	Соответствие, которое каждому	1) законом	низкий
	значению x_i дискретной случайной	распределения	
	величины X сопоставляет его	2) плотностью	
	вероятность p_i , называется	распределения 3) математическим	
	1 1 1	ожиданием	
		4) случайной величиной	
5.	Функция $F(x) = P(X < x)$,	1) функцией	низкий
		распределения	
	$x\!\in\!\left(-\infty,\infty ight)$, называется случайной	2) плотностью	
	величины X .	распределения 3) математическим	
		ожиданием	
		4) дисперсией	
6.	Событие, которое считается	1) Выпало число 1.	средний
	невозможным при бросании игральной	2) Выпало чётное	
	кости на ровную поверхность.	число.	
		3) Выпало число	
		меньшее 7. 4) Кость встала на	
		вершину.	
7.	Вероятность выпадения герба при	Sopulity.	средний
	бросании монеты равна		

8.	Формула для $P(A \mid B) = \frac{P(AB)}{P(B)}$, иллюстрирующей связь событий A и B с $P(B) \neq 0$, называется	1) Условие независимости двух событий. 2) Формула полной вероятности. 3) Формула Байеса. 4) Формула условной вероятности.	средний
9.	Пусть функция распределения случайной величины X нам неизвестна, но мы располагаем случайной выборкой $\vec{X}=\left(X_1,X_2,,X_n\right)$. По наблюдениям выборки \vec{X} мы хотим дать ответ на вопрос: совпадает функция распределения $F\left(x\right)$ с некоторой наперед заданной функцией распределения $F_0\left(x\right)$ или нет. При такой постановке задачи говорят, что речь идет о	1) проверке статистической гипотезы 2) эффективной оценке 3) асимптотически эффективной оценке 4) статистическом критерии	средний
10	Формула $P(A) = \sum_{i=1}^n P(H_i) P(A \mid H_i)$, где H_i , $i=1,,n$, – полная группа событий и $P(H_i) > 0$, называется	1) Формула полной вероятности. 2) Формула Байеса. 3) Формула условной вероятности. 4) Формула Бернулли	средний
11	При решении практических задач вместо оценки неизвестного параметра распределения случайной величины важнее знать границы, в которых этот параметр находится. Эти границы строятся по выборке и образуют	1) доверительный интервал 2) эффективную оценку 3) асимптотически эффективную оценку 4) статистический критерий	средний
12	Выборочным средним называется выражение	1) $\overline{X}_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 2) $S_{n}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$ 3) $\overline{X}_{n}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$ 4) $S_{n}^{(k)} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$	
13	Если существует такая неотрицательная функция $f(x)$, что функция распределения $F(x)$ для каждого $x \in (-\infty, \infty)$ представима в	1) законом распределения 2) плотностью распределения 3) математическим ожиданием 4) дисперсией	средний

			1
	виде $F(x) = \int_{-\infty}^{x} f(y)dy$, то $f(x)$		
	называется случайной величины $ X . $		
14	Выражение $M\left(X\right) = \sum_{i=1}^{n} x_{i} p_{i}$	1) ковариацией 2) средним квадратическим	средний
	называется дискретной случайной величины X	отклонением 3) математическим ожиданием 4) дисперсией	
15	Выражение $D(X) = \sum_{i=1}^n \bigl(x_i - M\left(X\right)\bigr)^2 p_i$ называется дискретной случайной величины X	1) ковариацией 2) средним квадратическим отклонением 3) математическим ожиданием 4) дисперсией	средний
16	Количество элементов, образующих пространство элементарных событий при бросании монеты, равно		высокий
17	Количество элементов, образующих пространство элементарных событий при бросании игральной кости, равно		высокий
18	Формула $P_n(m) = C_n^m p^m q^{n-m}$, где $P_n(m)$ означает вероятность наступления некоторого события A m раз в n испытаниях, а p – вероятность наступления события A в одном испытании, а q – вероятность наступления дополнительного к A события в одном испытании, называется	 Формула полной вероятности. Формула Байеса. Формула условной вероятности. Формула Бернулли 	высокий
19	При большом числе испытаний пользоваться формулой Бернулли неудобно, в таком случае пользуются приближенной формулой, фигурирующей в	1) локальной теореме Муавра-Лапласа 2) интегральной теореме Муавра-Лапласа 3) теореме Пуассона 4) теореме Пирсона	высокий
20	Выражение $\operatorname{cov}(X,Y) = M\left(\left(X-M\left(X\right)\right)\left(Y-M\left(X\right)\right)\right)$ называется двух случайных величин X и Y	1) ковариацией	высокий